Recent advancements in two-photon polymerization (2PP) allowed for the precise and versatile fabrication of three-dimensional nano- and microscale structures, making it ideal for use in microelectronics, optoelectronics, photonics, and biomedical engineering. This research demonstrates the effective fabrication of multimaterial microstructures by an in situ material exchange technique using a commercial printhead system. Therefore, the effect of pre-existing microstructures on the laminar exchange flow was investigated, revealing areas of zero-flow and residual material. Residual material can be minimized with extended times of flow. In addition, the study shows a novel application idea for lateral multimaterial microlens printing. On large surfaces, we achieved very good lateral lens alignment as well as in situ material exchange. Lateral multimaterial printing provides substantial benefits over typical vertical lenses in optics and photonics integration. The technique included printing a core lenslet and peripheral lenslets utilizing custom materials for the in situ exchange. Overall, our results demonstrate the adaptability of multimaterial printing via in situ material exchange inside a commercial 2PP system, which broadens design options and improves functioning across multiple technological domains.

1.
S.
Maruo
,
O.
Nakamura
, and
S.
Kawata
,
Opt. Lett.
22
,
132
(
1997
).
2.
S.
Wu
,
J.
Serbin
, and
M.
Gu
,
J. Photochem. Photobiol. A
181
,
1
(
2006
).
4.
J. H.
Atwater
,
P.
Spinelli
,
E.
Kosten
,
J.
Parsons
,
C.
Van Lare
,
J.
Van De Groep
,
J. G.
De Abajo
,
A.
Polman
, and
H. A.
Atwater
,
Appl. Phys. Lett.
99
,
151113
(
2011
).
5.
T.
Aderneuer
,
O.
Fernández
, and
R.
Ferrini
,
Opt. Express
29
,
39511
(
2021
).
6.
H.
Wang
et al,
Int. J. Ext. Manuf.
6
,
042002
(
2024
).
7.
M.
Khosravi
,
X.
Qi
, and
M. A.
Schmidt
,
Opt. Express
32
,
28206
(
2024
).
8.
9.
T.
Gissibl
,
S.
Thiele
,
A.
Herkommer
, and
H.
Giessen
,
Nat. Photonics
10
,
554
(
2016
).
10.
T.
Gissibl
,
S.
Thiele
,
A.
Herkommer
, and
H.
Giessen
,
Nat. Commun.
7
,
11763
(
2016
).
11.
M.
Schmid
,
S.
Thiele
,
A.
Herkommer
, and
H.
Giessen
,
Opt. Lett.
43
,
5837
(
2018
).
12.
B.
Wang
,
Q.
Zhang
, and
M.
Gu
,
Opt. Mater. Express
10
,
3174
(
2020
).
13.
M.
Schmid
,
F.
Sterl
,
S.
Thiele
,
A.
Herkommer
, and
H.
Giessen
,
Opt. Lett.
46
,
2485
(
2021
).
14.
M. D.
Schmid
,
A.
Toulouse
,
S.
Thiele
,
S.
Mangold
,
A. M.
Herkommer
, and
H.
Giessen
,
Adv. Funct. Mater.
33
,
2211159
(
2023
).
15.
K.
Weißenbruch
,
E. D.
Lemma
,
M.
Hippler
, and
M.
Bastmeyer
,
Curr. Opin. Biotechnol.
73
,
290
(
2022
).
16.
F.
Rajabasadi
,
S.
Moreno
,
K.
Fichna
,
A.
Aziz
,
D.
Appelhans
,
O. G.
Schmidt
, and
M.
Medina-Sánchez
,
Adv. Mater.
34
,
2204257
(
2022
).
17.
L.
Yang
,
F.
Mayer
,
U. H. F.
Bunz
,
E.
Blasco
, and
M.
Wegener
,
Light Adv. Manuf.
2
,
296
(
2021
).
18.
F.
Mayer
,
S.
Richter
,
J.
Westhauser
,
E.
Blasco
,
C.
Barner-Kowollik
, and
M.
Wegener
,
Sci. Adv.
5
,
eaau9160
(
2019
).
19.
S.
Varapnickas
and
M.
Malinauskas
, “
Processes of laser direct writing 3D nanolithography
,” in
Springer eBooks
, (
Springer
,
Cham
,
2021
), pp.
1401
1430
.
20.
F.
Cantoni
et al,
Addit. Manuf.
76
,
103761
(
2023
).
21.
G.
Balčas
,
M.
Malinauskas
,
M.
Farsari
, and
S.
Juodkazis
,
Adv. Funct. Mater.
33
,
2215230
(
2023
).
22.
D.
Zhu
,
J.
Zhang
,
Q.
Xu
, and
Y.
Li
,
Opt. Express
31
,
36037
(
2023
).
23.
S.
Rekštyte
,
E.
Balčiūnas
,
D.
Baltriukienė
,
V.
Rutkūnas
,
V.
Bukelskienė
,
R.
Gadonas
, and
M.
Malinauskas
,
J. Laser Micro/Nanoeng.
9
,
25
(
2014
).
24.
S.
Sarker
et al,
Adv. Mater. Technol.
8
,
2201641
(
2023
).
25.
R.
Kirchner
,
N.
Chidambaram
, and
H.
Schift
,
Opt. Eng.
57
,
1
(
2018
).
26.
L.
Jonušauskas
,
S.
Rekštyte
, and
M.
Malinauskas
,
Opt. Eng.
53
,
125102
(
2014
).
27.
Y.
Gao
,
S.
Toukabri
,
Y.
Yu
,
A.
Richter
, and
R.
Kirchner
,
Proceedings of the 2021 SPIE Photonics West
,
California, USA
,
6–12 March 2021
(
SPIE
,
California
,
2021
).
28.
M.
Thiel
and
M.
Hermatschweiler
,
Opt. Photonik
6
,
36
(
2011
).
29.
D.
Ladika
,
A.
Butkus
,
V.
Melissinaki
,
E.
Skliutas
,
E.
Kabouraki
,
S.
Juodkazis
,
M.
Farsari
, and
M.
Malinauskas
,
Adv. Manuf.
5
,
567
(
2024
).
30.
Thorlabs
, see https://www.thorlabs.de/thorproduct.cfm?partnumber=TRH064-010-A for “Unmounted Ø1/4” Hastings Achromatic Triplet, f = 10.2 mm, ARC: 400–700 nm,” TRH064-010-A, accessed July 3, 2024.
You do not currently have access to this content.