The Pt/epitaxy n-Si/n+Si Schottky barrier diodes (SBDs) with a Schottky contact area of 9 × 10−4 cm2 were fabricated, and their experimental current-voltage (I-V) characteristics exhibited an ideal behavior in the 20–320 K range. We investigated the thermal sensitivity behavior of this SBD, which exhibits an ideal behavior. The series resistance Rs value remained approximately unchanged as 10.00 Ω at 20 K and 9.258 Ω at 320 K. A barrier height value of q Φ b 0 = 0.807 eV at 320 K shows a slight decrease to 120 K, and the ideality factor n value shows a slight increase from 1.016 at 320 to 1.070 at 120 K. Furthermore, the sharp decrease in q Φ b 0 value, from 120 to 20 K, was ascribed to the barrier height inhomogeneity due to the low-barrier patches at the Pt/n-Si interface. It has been seen that the forward bias voltage-temperature (V-T) curves for the thermal sensitivity behavior have two linear regions, the low temperature region (LTR) and high temperature region (HTR), at each current level from 1.0 pA to 1.0 mA. The thermal sensitivity coefficient α from the slope of the VT curve increased with a decrease at the current level in both regions. At each current level, the V-T curves give higher α values in the HTR than those in the LTR. The α value ranged from 3.302 mV/K at 1.0 pA to 1.590 mV/K at 1.0 mA in the HTR. As a result, it was concluded that the Pt/n-Si diode can be used as a high-sensitivity thermal diode for sensor applications since its thermal sensitivity values coincide with the literature values.

1.
M.
Bose
and
S. B.
Ota
,
Rev. Sci. Instrum.
67
,
4176
(
1996
).
2.
Y. M.
Shwarts
,
V. L.
Borblik
,
N. R.
Kulish
,
V. N.
Sokolov
,
M. M.
Shwarts
, and
E. F.
Venger
,
Sens. Actuators, A
76
,
107
(
1999
).
3.
X.
Li
,
T.
Pu
,
X.
Li
,
L.
Li
, and
J. P.
Ao
,
IEEE Trans. Electron Devices
67
,
1171
(
2020
).
4.
P. R. N.
Childs
,
J. R.
Greenwood
, and
C. A.
Long
,
Rev. Sci. Instrum.
71
,
2959
(
2000
).
5.
N. G.
Filonov
,
Instrum. Exp. Tech.
45
,
412
(
2002
).
6.
V.
Kumar
,
A. S.
Maan
, and
J.
Akhtar
,
J. Vac. Sci. Technol. B
32
,
041203
(
2014
).
7.
A.
Turut
and
H.
Efeoğlu
,
Turk. J. Phys.
45
,
268
(
2021
).
8.
G.
Pristavu
,
G.
Brezeanu
,
R.
Pascu
,
F.
Drăghici
, and
M.
Bădilă
,
Mater. Sci. Semicond. Process.
94
,
64
(
2019
).
9.
Y. M.
Shwarts
,
M. M.
Shwarts
, and
S. V.
Sapon
,
ADAMS 2008, International Conference on Advanced Semiconductor Devices and Microsystems
(
IEEE
,
Slovakia
,
2008
), pp.
239
242
.
10.
H.
Efeoǧlu
and
A.
Turut
,
J. Vac. Sci. Technol. B
41
,
022207
(
2023
).
11.
V.
Kumar
,
S.
Pawar
,
A. S.
Maan
, and
J.
Akhtar
,
J. Vac. Sci. Technol. B
33
,
052207
(
2015
).
12.
V. A.
Krasnov
,
S. V.
Shutov
,
S. Y.
Yerochin
, and
O. M.
Demenskyi
,
IEEE Sens. J
19
,
1640
(
2019
).
13.
Q.
Guo
,
F.
Lu
,
Q.
Tan
,
T.
Zhou
,
J.
Xiong
, and
W.
Zhang
,
Sensors
19
,
224
(
2019
).
14.
E. H.
Rhoderick
and
R. H.
Willams
,
Metal Semiconductor Contacts
, 2nd ed. (
Clarendon
,
Oxfords
,
1988
).
15.
16.
S. K.
Cheung
and
N. W.
Cheung
,
Appl. Phys. Lett.
49
,
85
(
1986
).
17.
J.
Osvald
,
L.
Hrubčín
, and
B.
Zaťko
,
Mater. Sci. Semicond. Process.
140
,
106413
(
2022
).
18.
A.
Kumar
,
A.
Kumar
,
K. K.
Sharma
, and
S.
Chand
,
Superlattices Microstruct.
128
,
373
(
2019
).
19.
M. C.
Özdemir
,
Ö.
Sevgili
,
İ.
Orak
, and
A.
Türüt
,
Int. J. Chem. Technol.
3
,
129
(
2019
).
20.
B.
Bati
,
Ç.
Nuhoğlu
,
M.
Sağlam
,
E.
Ayyildiz
, and
A.
Türüt
,
Phys. Scr.
61
,
209
(
2000
).
21.
A.
Türüt
,
B.
Bati
,
A.
Kökçe
,
M.
Saǧlam
, and
N.
Yalçin
,
Phys. Scr.
53
,
118
(
1996
).
22.
F.
Roccaforte
,
F.
Giannazzo
,
A.
Alberti
,
M.
Spera
,
M.
Cannas
,
I.
Cora
,
B.
Pécz
,
F.
Iucolano
, and
G.
Greco
,
Mater. Sci. Semicond. Process.
94
,
164
(
2019
).
23.
A.
Kaymaz
,
E. Evcin
Baydilli
,
H.
Tecimer
,
H.
Uslu Tecimer
, and
Ş.
Altındal
,
Mater. Today Commun.
35
,
106380
(
2023
).
24.
I.
Gumus
and
S.
Aydogan
,
J. Phys. D: Appl. Phys.
56
,
405105
(
2023
).
25.
A.
Kumar
,
K. K.
Sharma
,
S.
Chand
, and
A.
Kumar
,
Superlattices Microstruct.
122
,
304
(
2018
).
26.
M. C.
Özdemir
,
O.
Sevgili
,
I.
Orak
, and
A.
Turut
,
Mater. Sci. Semicond. Process.
125
,
105629
(
2021
).
27.
A. F.
Özdemir
,
A.
Turut
, and
A.
Kökçe
,
Semicond. Sci. Technol.
21
,
298
(
2006
).
28.
J. H.
Werner
and
H. H.
Güttler
,
Phys. Scr.
T39
,
258
(
1991
).
29.
J. P.
Sullivan
,
R. T.
Tung
,
M. R.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
(
1991
).
30.
M. S.
Gorji
and
K. Y.
Cheong
,
Appl. Phys. A
118
,
315
(
2015
).
31.
S. B.
Ota
and
S.
Ota
,
Mod. Phys. Lett. B
14
,
393
(
2000
).
32.
H.
Efeoğlu
and
A.
Turut
,
J. Phys. D: Appl. Phys.
55
,
185303
(
2022
).
33.
A.
Turut
,
J. Vac. Sci. Technol. B
41
,
062202
(
2023
).
34.
K.
Zeghdar
,
H.
Bencherif
,
L.
Dehimi
,
F.
Pezzimenti
, and
F. G.
DellaCorte
,
Solid State Electron. Lett.
2
,
49
(
2020
).
35.
O.
Cicek
,
S.
Altindal
, and
Y.
Azizian-Kalandaragh
,
IEEE Sens. J.
20
,
14081
(
2020
).
36.
V. A.
Krasnov
,
S. V.
Shutov
,
S. Y.
Yerochin
, and
A. N.
Demenskiy
,
J. Vac. Sci. Technol. B
36
,
022905
(
2018
).
38.
K. G. S.
Thanmayee
,
S.
Putta
, and
D. V.
Krishna
,
Mater. Today: Proc.
79
,
342
(
2023
).
39.
M. S.
Gorji
and
K. Y.
Cheong
,
Crit. Rev. Solid State Mater. Sci.
40
,
197
(
2015
).
40.
S.
Rao
,
G.
Pangallo
,
F.
Pezzimenti
, and
F. G.
Della Corte
,
IEEE Electron Device Lett.
36
,
720
(
2015
).
41.
N.
Zhang
,
C. M.
Lin
,
D. G.
Senesky
, and
A. P.
Pisano
,
Appl. Phys. Lett.
104
,
073504
(
2014
).
42.
L.
Li
,
T.
Pu
,
X.
Li
, and
J.-P.
Ao
,
IEEE Sens. J.
22
,
1933
(
2022
).
43.
V.
Kumar
,
J.
Verma
,
A. S.
Maan
, and
J.
Akhtar
,
Vacuum
182
,
109590
(
2020
).
44.
S. J.
Min
,
M. C.
Shin
,
N.
Thi Nguyen
,
J. M.
Oh
, and
S. M.
Koo
,
Materials
13
,
445
(
2020
).
45.
H.
Singh
,
H.
Sharma
,
R.
Narayan
, and
A.
Kumar
,
Mater. Today: Proc.
(published online) (
2023
).
47.
N. S.
Boltovets
,
V. V.
Kholevchuk
,
R. V.
Konakova
,
V. F.
Mitin
, and
E. F.
Venger
,
Sens. Actuators A: Phys.
92
,
191
(
2001
).
You do not currently have access to this content.