The scaling of dynamic random-access memory (DRAM) has driven extensive research not only on insulators and but also on electrodes in capacitor structures. Due to the physical dimensional constraints of these structures, such as their physical thickness, new properties on the electrode are required to improve interface characteristics, including reactivity of the electrode with the insulator and crystallinity coherency, in addition to conventional properties like work function. Traditional electrodes like TiN have suffered to increase leakage currents due to oxygen scavenging effects and a lower work function, which become more severe as DRAM scales down. In this study, we investigate the use of MoO2 as an alternative electrode material in ZrO2-based metal-insulator-metal capacitors. MoO2, with its high work function of 5.5 eV, exhibits excellent crystallinity compatibility with tetragonal-phase ZrO2 and a low oxidation potential, which collectively lead to enhanced capacitance and significantly reduced leakage current. The MoO2 electrode suppresses the formation of oxygen vacancies at the interface, as confirmed by x-ray photoelectron spectroscopy and nonlinearity capacitance measurements, resulting in improved device reliability. Our findings suggest that MoO2 is a promising electrode material for next-generation DRAM capacitors, offering a balance between high capacitance and low leakage current.

1.
C. S.
Hwang
,
Adv. Electron. Mater.
1
,
1400056
(
2015
).
2.
S. K.
Kim
and
M.
Popovici
,
MRS Bull.
43
,
334
(
2018
).
3.
S. E.
Kim
et al,
Adv. Mater. Technol.
8
,
2200878
(
2023
).
4.
A.
Spessot
and
H.
Oh
,
IEEE Trans. Electron Devices
67
,
1382
(
2020
).
6.
G.
Jegert
,
A.
Kersch
,
W.
Weinreich
, and
P.
Lugli
,
J. Appl. Phys.
109
,
014504
(
2011
).
7.
H.
Seo
,
I. W.
Yeu
,
D. S.
Kwon
,
D. G.
Kim
,
J.
Lim
,
T. K.
Kim
,
H.
Paik
,
J. H.
Choi
, and
C. S.
Hwang
,
Adv. Electron. Mater.
8
,
2200099
(
2022
).
8.
H. J.
Cho
et al,
Solid State Electron.
51
,
1529
(
2007
).
9.
W.
Jeon
,
H.-S.
Chung
,
D.
Joo
, and
S.-W.
Kang
,
Electrochem. Solid State Lett.
11
,
H19
(
2008
).
10.
Y. N.
Tan
,
W. K.
Chim
,
W. K.
Choi
,
M. S.
Joo
, and
B. J.
Cho
,
IEEE Trans. Electron Devices
53
,
654
(
2006
).
11.
S. H.
Cha
,
C. H.
An
,
S. T.
Cho
,
D. G.
Kim
,
D. S.
Kwon
,
J. I.
Lim
,
W.
Jeon
, and
C. S.
Hwang
,
Phys. Status Solidi RRL
13
,
1900282
(
2019
).
12.
K.
Yim
,
Y.
Yong
,
J.
Lee
,
K.
Lee
,
H. H.
Nahm
,
J.
Yoo
,
C.
Lee
,
C.
Seong Hwang
, and
S.
Han
,
NPG Asia Mater.
7
,
e190
(
2015
).
13.
W.
Weinreich
,
L.
Wilde
,
J.
Müller
,
J.
Sundqvist
,
E.
Erben
,
J.
Heitmann
,
M.
Lemberger
, and
A. J.
Bauer
,
J. Vac. Sci. Technol. A
31
,
01A119
(
2013
).
14.
S.
Lee
et al,
ACS Appl. Electron. Mater.
6
,
3362
(
2024
).
15.
A.
Uedono
et al,
Thin Solid Films
762
,
139557
(
2022
).
16.
W.
Jeon
,
Y.
Kim
,
C. H.
An
,
C. S.
Hwang
,
P.
Gonon
, and
C.
Vallee
,
IEEE Trans. Electron Devices
65
,
660
(
2018
).
17.
W.
Weinreich
,
A.
Shariq
,
K.
Seidel
,
J.
Sundqvist
,
A.
Paskaleva
,
M.
Lemberger
, and
A. J.
Bauer
,
J. Vac. Sci. Technol. B
31
,
01A
(
2013
).
18.
F.
Fillot
,
T.
Morel
,
S.
Minoret
,
I.
Matko
,
S.
Maîtrejean
,
B.
Guillaumot
,
B.
Chenevier
, and
T.
Billon
,
Microelectron. Eng.
82
,
248
(
2005
).
19.
M.
Pešić
et al,
Solid State Electron.
115
,
133
(
2016
).
20.
W.
Jeon
,
S.
Yoo
,
H. K.
Kim
,
W.
Lee
,
C. H.
An
,
M. J.
Chung
,
C. J.
Cho
,
S. K.
Kim
, and
C. S.
Hwang
,
ACS Appl. Mater. Interfaces
6
,
21632
(
2014
).
21.
D. S.
Kwon
,
W.
Jeon
,
D. G.
Kim
,
T. K.
Kim
,
H.
Seo
,
J.
Lim
, and
C. S.
Hwang
,
ACS Appl. Mater. Interfaces
13
,
23915
(
2021
).
22.
E. Y.
Jung
,
J.
Bang
,
J. H.
Hwang
,
D. H.
Han
,
Y.
Kim
,
H.
Kim
, and
W.
Jeon
,
Nanotechnology
32
,
045201
(
2021
).
23.
Y. W.
Kim
et al,
J. Mater. Chem. C
10
,
12957
(
2022
).
24.
W.
Lee
,
C. J.
Cho
,
W. C.
Lee
,
C. S.
Hwang
,
R. P. H.
Chang
, and
S. K.
Kim
,
J. Mater. Chem. C
6
,
13250
(
2018
).
25.
J. H.
Lee
,
W.
Kang
,
J. E.
Shin
,
B. K.
Park
,
T. M.
Chung
, and
J. H.
Han
,
ACS Appl. Mater. Interfaces
16
,
23606
(
2024
).
27.
J.
Narayan
and
B. C.
Larson
,
J. Appl. Phys.
93
,
278
(
2003
).
28.
R.
Zhao
et al,
IEEE Trans. Electron Devices
69
,
1492
(
2022
).
29.
L.
Jin
,
L.
Ni
,
Q.
Yu
,
A.
Rauf
, and
C.
Zhou
,
Comput. Mater. Sci.
65
,
170
(
2012
).
30.
Y.
Goh
,
S. H.
Cho
,
S. H. K.
Park
, and
S.
Jeon
,
Nanoscale
12
,
9024
(
2020
).
31.
Q.
He
,
T.
Yu
,
B.
Zeng
,
P.
Hao
,
S.
Zheng
,
Q.
Peng
,
Y.
Zhou
, and
M.
Liao
,
Mater. Horiz.
11
,
5684
(
2024
).
32.
T. S.
Böscke
, “
Crystalline Hafnia and Zirconia based Dielectrics for Memory Applications
,”
Ph.D. dissertation
(
Tech. Univ. Hamburg
,
2010
).
33.
O.
Khaldi
,
P.
Gonon
,
C.
Vallée
,
C.
Mannequin
,
M.
Kassmi
,
A.
Sylvestre
, and
F.
Jomni
,
J. Appl. Phys.
116
,
084104
(
2014
).
34.
D. H.
Han
,
S.
Lee
,
J. H.
Hwang
,
Y.
Kim
,
M.
Bonvalot
,
C.
Vallee
,
P.
Gonon
, and
W.
Jeon
,
IEEE Trans. Electron Devices
68
,
5753
(
2021
).
35.
P.
Gonon
and
C.
Vallee
, in
2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM)
(
IEEE
,
New York
,
2015
), p.
636
.
36.
C.
Hwang
,
Y. W.
Kim
,
J.
Park
,
M. H.
Kim
,
J.-S.
Kim
, and
W.
Jeon
,
J. Alloys Compd.
1003
,
175514
(
2024
).
37.
J.
Niinistö
et al,
J. Mater. Chem.
18
,
3385
(
2008
).
38.
J.
Aarik
,
A.
Aidla
,
H.
Mändar
,
T.
Uustare
, and
V.
Sammelselg
,
Thin Solid Films
408
,
97
(
2002
).
39.
K.
Kukli
,
K.
Forsgren
,
M.
Ritala
,
M.
Leskelä
,
J.
Aarik
, and
A.
Hårsta
,
J. Electrochem. Soc.
148
,
F227
(
2001
).
You do not currently have access to this content.