Polymer materials are frequently used in vacuum systems despite their relatively high outgassing rates, with water being the primary component of this outgassing. In this paper, we propose a novel modeling method for predicting water outgassing from polymers. This model incorporates both the adsorption and desorption dynamics of water molecules on the material’s surface, offering a more comprehensive understanding of outgassing behavior. Experimental measurements were conducted by throughput method on two polymer materials commonly used in satellite systems to validate the proposed model, specifically carbon fiber-polymeric composite materials and polyimide cable materials. A temperature-variable simulation was also conducted to verify the applicability of the model. The results demonstrate the accuracy and applicability of the method, providing guidance for optimizing material selection and vacuum system performance in different applications.

1.
A. C.
Tribble
,
B.
Boyadjian
,
J.
Davis
,
J.
Haffner
, and
E.
McCullough
,
AlAA, Space Programs and Technologies Conference
,
Huntsville, AL
,
24–26 September 1996
(SPIE, Denver, CO,
1996
).
2.
P.
Chiggiato
, “Outgassing properties of vacuum materials for particle accelerators,” arXiv:2006.07124 [physics.acc-ph] (
2020
).
3.
J. F.
O’Hanlon
,
A User’s Guide to Vacuum Technology
(
John Wiley & Sons
,
Hoboken
,
2023
).
4.
L.
Hongfeng
,
Z.
Yue
,
W.
Zhangzhao
, and
S.
Bin
,
2022 23rd International Conference on Electronic Packaging Technology (ICEPT)
,
10–13 August 2022
(IEEE, Dalian, China
2022
).
5.
M.
Li
,
Models for Water Outgassing From Metal Surfaces
(
The College of William and Mary
,
Williamsburg
,
1994
).
6.
B.
Duncan
,
J.
Urquhart
, and
S.
Roberts
, “Review of measurement and modelling of permeation and diffusion in polymers,” NPL Report DEPC MPR 012 (2005).
7.
W. M.
Ni
,
The Mathematics of Diffusion
(
Society for Industrial and Applied Mathematics
,
Philadelphia
,
2011
).
8.
J.
Šetina
,
M.
Sefa
,
B.
Erjavec
, and
D.
Hudoklin
,
Int. J. Thermophys.
34
,
412
(
2013
).
9.
W.
Fang
,
M.
Shillor
,
E.
Stahel
,
E.
Epstein
,
C.
Ly
,
J.
McNiel
, and
E.
Zaron
,
SIAM J. Appl. Math.
51
,
1327
(
1991
).
10.
S. G.
Sammartano
, “
Outgassing rates of PEEK, Kapton® and Vespel® polymers
,”
Master thesis
(CERN, Geneva,
2020
).
11.
I.
Chun
,
B.
Cho
, and
S.
Chung
,
J. Vac. Sci. Technol. A
14
,
2636
(
1996
).
12.
R.
Rampini
,
L.
Grizzaffi
, and
C.
Lobascio
,
Materialwiss. Werkstofftech.
34
,
359
(
2003
).
13.
J. L. de Segovia
, “
Physics of outgassing
,” in
CAS CERN Accelerator School: Vacuum Technology
, edited by S. Turner (CERN, Geneva, 1999), pp. 99–110.
15.
F. M.
Preda
,
A.
Alegría
,
A.
Bocahut
,
L. A.
Fillot
,
D. R.
Long
, and
P.
Sotta
,
Macromolecules
48
,
5730
(
2015
).
16.
I.
Iso
and
B.
Oiml
,
Guide to the Expression of Uncertainty in Measurement
(
Aenor
,
Madrid
,
1993
).
17.
M.
Sefa
,
J.
Setina
, and
B.
Erjavec
,
Mater. Technol.
48
,
119
(
2014
).
18.
H.
Dylla
,
The Problem of Water in Vacuum Systems
(
CERN Accelerator School, Department of Physics and Applied Science
, Geneva,
2006
).
You do not currently have access to this content.