The development of chemically amplified resists requires many experiments to optimize the chemical composition, which includes the type of monomer molecules and their component ratios, initiator concentration, and process conditions. In addition, the optimization process requires extensive knowledge and experience. In this paper, we apply deep learning to predict the exposure properties, such as sensitivity and contrast, of KrF chemically amplified resists and to optimize the ratio of monomer components. The experimental data are used to predict photoresist development properties by deep learning using in-house code. To achieve this goal, we synthesized several photoresist resins with different proportions. Each resin was then used to prepare photoresist formulations, which were subsequently subjected to exposure and development testing under various energy conditions. Using the film thickness data obtained, we trained our deep learning system to more comprehensively predict the exposure and development curves of photoresists under different resin component conditions. The results of validation experiments showed that the predicted results were consistent with the experimental results, and the predictions for the exposure and development characteristics of different monomer component ratios were quite accurate, confirming that the deep learning outcomes possess high credibility and feasibility.

1.
H.
Roeschert
et al,
Adv. Resist Technol. Process. X
1925
,
14
(
1993
).
2.
J.
Thackeray
,
G.
Orsula
,
E.
Pavelchek
,
D.
Canistro
,
L. E.
Bogan
,
A.
Berry
, and
K.
Graziano
,
Adv. Resist Technol. Process. VI
1086
,
34
(
1989
).
3.
K.
Matsunaga
,
D.
Kawamura
,
S.
Mimotogi
,
T.
Azuma
, and
Y.
Onishi
,
Jpn. J. Appl. Phys.
37
,
6884
(
1998
).
4.
M.
Asano
,
Jpn. J. Appl. Phys.
38
,
6999
(
1999
).
5.
Y.
Hirai
,
S.
Tsukamoto
,
H.
Tanabe
,
K.
Kameyama
,
H.
Kawata
, and
M.
Yasuda
,
Nanomaterials
12
,
2571
(
2022
).
6.
B.
Inoue
,
Y.
Hirai
, and
M.
Yasuda
,
Proceedings of 71st Symposium on Macromolecules,
Sapporo, Japan, 5–7 September 2022 (
SPSJ, Tokyo
,
2022
), p.
2S05
.
7.
B.
Inoue
,
Y.
Hirai
, and
M.
Yasuda
,
Proceedings of 83rd JSAP Autumn Meeting,
Sendai, Japan, 20 September 2022 (
JSJP, Tokyo
,
2022
), p.
20a-C101-5
.
8.
W.
McCulloch
and
W.
Pitts
,
Bull. Math. Biol.
7
,
115
(
1943
).
9.
F.
Rosenblatt
,
Psychol. Rev.
6
,
386
(
1958
).
10.
E.
Rumelhart
,
E.
Hinton
, and
J.
Williams
,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, Vol. 1: Foundations (
MIT Press
,
Cambridge
,
1986
), p.
282
.
11.
P.
Smolensky
,
Parallel Distributed Processinh
, Vol. 1: Foundations (
MIT Press
,
Cambridge
,
1986
), pp.
194
281
.
12.
D.
Rumelhart
,
G.
Hinton
, and
R.
Williams
,
Nature
323
,
533
(
1986
).
13.
A.
Krizhevsky
,
I.
Sutskever
, and
E.
Hinton
,
Commun. ACM
60
,
84
(
2017
).
14.
I.
Goodfellow
,
Y.
Bulatov
,
J.
Ibarz
,
S.
Arnoud
, and
V.
Shet
, e-print arXiv:1312.6082 (
2013
).
15.
H.
Yang
,
L.
Luo
,
J.
Su
,
C.
Lin
, and
B.
Yu
,
J. Micro/Nanolithogr., MEMS, MOEMS
16
,
033504
(
2017
).
16.
X.
Ma
,
X.
Zheng
, and
G.
Arce
,
Opt. Express
28
,
20404
(
2020
).
17.
B. G.
Ghule
,
M.
Kim
, and
J. H.
Jang
,
Bull. Korean Chem. Soc.
44
,
900
(
2023
).
18.
P.
Kong
,
L.
Dong
,
X.
Ma
, and
Y.
Wei
,
Proc. SPIE
12498
,
124981U
(
2023
).
19.
Y.
Jin
,
T.
Kozawa
, and
T.
Tamura
,
Jpn. J. Appl. Phys.
60
,
076509
(
2021
).
20.
Y.
Kaimoto
,
K.
Nozaki
,
S.
Takechi
, and
N.
Abe
,
Proc. SPIE
1672
,
66
(
1992
).
21.
M.
Takahashi
,
S.
Takechi
,
Y.
Kaimoto
,
I.
Hanyu
,
N.
Abe
, and
K.
Nozaki
,
J. Photopolym. Sci. Technol.
9
,
475
(
1996
).
22.
See Python's official website (https://www.python.org) for information about the Python programming language, including features, documentation, and community resources.
23.
See PyTorch's official website (https://pytorch.org) for information about the PyTorch framework, including tutorials, API references, and tools for deep learning development.
24.
C.
Tang
,
A.
Sekiguchi
,
Y.
Ohta
,
Y.
Hirai
, and
M.
Yasuda
,
J. Vac. Sci. Technol. B
41
,
012602
(
2023
).
25.
A.
Sekiguchi
and
Y.
Sensu
,
Proc. SPIE
8682
,
86821K
(
2013
).
26.
F.
Dill
,
IEEE Trans. Electron Dev.
22
,
445
(
1975
).
27.
S.
Robertson
,
J.
Biafore
,
M.
Smith
,
M.
Reilly
, and
J.
Wandell
,
J. Micro/Nanolithgr. MEMS MOEMS
9
,
041212
(
2010
).
28.
C.
Mack
,
J. Electrochem. Soc.
134
,
148
(
1987
).
You do not currently have access to this content.