To improve the performance of the next-generation optical metasurface device, we investigated the feasibility of practical design and fabrication processes for 3D optical metasurface. 3D nanoimprint lithography technology could duplicate the multilayer pattern of the device in a single fabrication process with high resolution, which shows the prospect of manufacturing the 3D optical metasurface. To verify the superiority of this method, we designed a novel multilayer optical metasurface 1-to-8 beam splitter, which could achieve high energy utility efficiency and light intensity distribution of the eight beams based on the principle of Dammann grating. The multilayer structure that we designed was prepared on a Si wafer. Then, the pattern could be duplicated by the 3D nanoimprint lithography. We also do the sensitivity analysis on how the fabrication errors influence the optical properties of the device. The analytical results show the fabrication process is robust. The sample we made with 3D nanoimprint lithography technology has a performance of 86.4% power efficiency and only 2.33% light intensity deviation. The high device performance and the low fabricating cost show that the 3D nanoimprint lithography technology is a solid way to manufacture the optical metasurface with complex structures.

1.
R.
Juliano Martins
et al,
Nat. Commun.
13
,
5724
(
2022
).
3.
Y.
Li
,
W.
Liu
,
Z.
Li
,
H.
Cheng
, and
S.
Chen
,
Adv. Photonics Res.
5
,
2300352
(
2024
).
4.
Z.
Shen
and
X.
Huang
,
Photonics
10
,
623
(
2023
).
5.
A. S.
Solntsev
,
G. S.
Agarwal
, and
Y. S.
Kivshar
,
Nat. Photonics
15
,
327
(
2021
).
7.
M.
Faraji-Dana
,
Ehsan
Arbabi
,
Amir
Arbabi
,
Seyedeh Mahsa
Kamali
,
Hyounghan
Kwon
, and
Andrei
Faraon
,
Nat. Commun.
9
,
4196
(
2018
).
8.
R.
Geromel
,
P.
Georgi
,
M.
Protte
,
S.
Lei
,
T.
Bartley
,
L.
Huang
, and
T.
Zentgraf
,
Nano Lett.
23
,
3196
(
2023
).
10.
Z.
Shen
and
D.
Huang
,
Nanomanufacturing
2
,
194
(
2022
).
12.
X.
Zang
et al,
Laser Photonics Rev.
13
,
1900182
(
2019
).
13.
G.
Zhang
,
C.
Lan
,
R.
Gao
,
Y.
Wen
, and
J.
Zhou
,
Adv. Theory Simul.
2
,
1900123
(
2019
).
14.
J.
Ding
,
L.
Huang
,
W.
Liu
,
Y.
Ling
,
W.
Wu
, and
H.
Li
,
Opt. Express
28
,
32721
(
2020
).
15.
G.
Yoon
,
D.
Lee
,
K. T.
Nam
, and
J.
Rho
,
Sci. Rep.
8
,
9468
(
2018
).
16.
N.
He
,
T.
Guo
,
Y.
Jin
, and
S.
He
,
Appl. Sci.
13
,
4603
(
2023
).
17.
S. C.
Malek
,
A. C.
Overvig
,
A.
Alù
, and
N.
Yu
,
Light: Sci. Appl.
11
,
246
(
2022
).
18.
Z.-P.
Zhuang
,
H.-L.
Zeng
,
X.-D.
Chen
,
X.-T.
He
, and
J.-W.
Dong
,
Phys. Rev. Lett.
132
,
113801
(
2024
).
19.
H.
Liu
et al,
Adv. Opt. Mater.
7
,
1801639
(
2019
).
21.
T.-H.
Ou
et al,
J. Power Sources
617
,
235093
(
2024
).
22.
Y.
Sui
,
Pan
Hu
,
Dalong
Pan
,
Zhanshuo
Jiang
,
Qianliang
Song
,
Guangxu
Su
,
Wei
Wu
, and
Fanxin
Liu
,
Front. Phys.
10
,
951944
(
2022
).
25.
X.
Zhang
,
K.
Kwon
,
J.
Henriksson
,
J.
Luo
, and
M. C.
Wu
,
Nature
603
,
253
(
2022
).
26.
U.
Krackhardt
and
N.
Streibl
,
Opt. Commun.
74
,
31
(
1989
).
28.
J.
Yu
,
Changhe
Zhou
,
Wei
Jia
,
Jianyong
Ma
,
Anduo
Hu
,
Jun
Wu
, and
Shaoqing
Wang
,
Opt. Lett.
38
,
474
(
2013
).
29.
J.
Budhu
and
A.
Grbic
,
IEEE Trans. Antennas Propagation
71
,
7679
(
2023
).
30.
31.
M. M. R.
Elsawy
,
Stéphane
Lanteri
,
Régis
Duvigneau
,
Gauthier
Brière
,
Mohamed Sabry
Mohamed
, and
Patrice
Genevet
,
Sci. Rep.
9
,
17918
(
2019
).
32.
A.
Saad-Falcon
,
C.
Howard
,
J.
Romberg
, and
K.
Allen
,
Sci. Rep.
14
,
16674
(
2024
).
33.
34.
M. A.
De Araújo
,
R.
Silva
,
E.
De Lima
,
D. P.
Pereira
, and
P. C.
De Oliveira
,
Appl. Opt.
48
,
393
(
2009
).
You do not currently have access to this content.