We have formed SixGe1−x−ySny compounds on Si substrates by ion implantation and annealing and investigated their concentration profiles, crystallization, and optical properties. Ge and Sn ions were implanted in the range (2.5–10) × 1016 Ge/cm2 at 65 keV, and (1.0–4.0) × 1016 Sn/cm2 at 100 keV, resulting in a peak implant dose at a depth of 50 nm for both species. Epitaxially regrown SixGe1−x−ySny layers (110 nm thick) were produced with Ge and Sn contents that allowed bandgap tuning in the (0.88–1.1) eV range. Shifts in photoelectron binding energies (Si 2p, Ge 3d, and Sn 3d) were consistent with ternary compound formation. Sn segregation was observed for annealing temperatures ≥600 °C. A significant increase in the optical absorption coefficient (×104 cm−1 for λ = (800–1700) nm) was observed for SiGe, SiSn, and SiGeSn alloys, with SiGeSn having coefficients several orders of magnitude higher than for Si. Contributions of segregated Sn to these properties were observed. Metastable SixGe1−x−ySny layers were achieved, which may point to a promising route to mitigate Sn incorporation challenges for near-infrared detectors.

1.
O.
Moutanabbir
et al,
Appl. Phys. Lett.
118
,
110502
(
2021
).
2.
S.
Wirths
,
D.
Buca
, and
S.
Mantl
,
Prog. Cryst. Growth Charact. Mater.
62
,
1
(
2016
).
5.
G.
Abernathy
et al,
J. Appl. Phys.
129
,
093105
(
2021
).
6.
X.
Wang
,
A.
Cuervo Covian
,
L.
Je
,
S.
Fu
,
H.
Li
,
J.
Piao
, and
J.
Liu
,
Front. Phys.
7
,
134
(
2019
).
7.
R. E.
Anthony
, Ph.D. thesis (McMaster University,
2019
), p.
156
.
8.
R.
Anthony
,
D. E.
Hagan
,
D.
Genuth-Okon
,
L.
Martinez Maestro
,
I. F.
Crowe
,
M. P.
Halsall
, and
A. P.
Knights
,
IEEE J. Sel. Top. Quantum Electron.
26
,
1
(
2020
).
10.
R.
Olesinski
and
G.
Abbaschian
,
Bull. Alloy Phase Diagrams
5
,
265
(
1984
).
11.
R.
Olesinski
and
G.
Abbaschian
,
Bull. Alloy Phase Diagrams
5
,
273
(
1984
).
12.
A.
Attiaoui
and
O.
Moutanabbir
,
J. Appl. Phys.
116
,
063712
(
2014
).
13.
S.
Assali
,
J.
Nicolas
, and
O.
Moutanabbir
,
J. Appl. Phys.
125
,
025304
(
2019
).
14.
R. R.
Lieten
et al,
ECS J. Solid State Sci. Technol.
3
,
403
(
2014
).
15.
R.
Soref
,
J.
Kouvetakis
,
J.
Tolle
,
J.
Menendez
, and
V.
D’Costa
,
J. Mater. Res.
22
,
3281
(
2007
).
16.
N.
Von Den Driesch
,
S.
Wirths
,
R.
Troitsch
,
G.
Mussler
,
U.
Breuer
,
O.
Moutanabbir
,
D.
Grützmacher
, and
D.
Buca
,
Phys. Rev. Mater.
4
,
033604
(
2020
).
17.
D.
Grützmacher
,
O.
Concepción
,
Q. T.
Zhao
, and
D.
Buca
,
Appl. Phys. A
129
,
235
(
2023
).
18.
Y.
Zhou
et al,
2019 IEEE Research and Applications of Photonics in Defense Conference (RAPID)
,
Miramar Beach, FL
,
19–21 August 2019
(
IEEE
,
2019
).
19.
P. I.
Gaiduk
,
A.
Nylandsted Larsen
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
,
1239
(
2009
).
20.
G. H.
Wang
et al,
Appl. Phys. Lett.
91
,
202105
(
2007
).
21.
S.
Wen
et al,
Appl. Phys. Lett.
123
,
081109
(
2023
).
22.
L. V.
Goncharova
and
P. J.
Simpson
,
Physics
4
,
383
(
2022
).
23.
A. D.
Pogrebnjak
and
O. V.
Bondar
,
Ion Implantation: Synthesis, Applications and Technology
, edited by A. D. Pogrebnjak (Nova Science Publishers, Hauppauge, NY, 2019), pp. 334.
24.
V.
Garg
,
R. G.
Mote
, and
J.
Fu
,
Appl. Surf. Sci.
526
,
146644
(
2020
).
25.
H.
Lin
,
R.
Chen
,
W.
Lu
,
Y.
Huo
,
T. I.
Kamins
, and
J. S.
Harris
,
Appl. Phys. Lett.
100
,
141908
(
2012
).
26.
P.
Moontragoon
,
Z.
Ikonić
, and
P.
Harrison
,
Semicond. Sci. Technol.
22
,
742
(
2007
).
28.
P.
Kringhøj
and
R. G.
Elliman
,
Appl. Phys. Lett.
65
,
324
(
1994
).
29.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
1818
(
2010
).
30.
M.
Mayer
,
SIMNRA User's Guide
(
Max-Planck-Institut fur Plasmaphysik
,
Garching
,
1997
).
31.
N.
Fairley
et al,
Appl. Surf. Sci. Adv.
5
,
100112
(
2021
).
32.
M. C.
Biesinger
,
Appl. Surf. Sci.
597
,
153681
(
2022
).
33.
See https://www.jawoollam.com/ellipsometry-software/completeease for information about the completeEASE software. (
2024
).
34.
C. M.
Herzinger
,
B.
Johs
,
W. A.
McGahan
,
J. A.
Woollam
, and
W.
Paulson
,
J. Appl. Phys.
83
,
3323
(
1998
).
35.
J. A.
Woollam
,
CompleteEASE Software Manual
(
J. A. Woollam Co., Inc.
,
Lincoln
,
2014
).
36.
E.
Kadri
,
M.
Krichen
,
S.
Elleuch
, and
A. B.
Arab
,
Opt. Quantum Electron.
48
,
1
(
2016
).
37.
L.
Leqi
and
N. M.
Ravindra
,
Mater. Sci. Eng. Int. J.
4
,
131
(
2020
).
38.
B.
Munkhbat
,
P.
Wróbel
,
T. J.
Antosiewicz
, and
T. O.
Shegai
,
ACS Photonics
9
,
2398
(
2022
).
39.
S.
Yoo
and
Q. H.
Park
,
Nanophotonics
11
,
2811
(
2022
).
40.
Y. N.
Parkhomenko
,
A. I.
Belogorokhov
,
N. N.
Gerasimenko
,
A. V.
Irzhak
, and
M. G.
Lisachenko
,
Semiconductors
38
,
572
(
2004
).
41.
P.
Kringhøj
and
R. G.
Elliman
,
Phys. Rev. Lett.
73
,
858
(
1994
).
42.
A.
Bhatia
,
W. M.
Hlaing Oo
,
G.
Siegel
,
P. R.
Stone
,
K. M.
Yu
, and
M. A.
Scarpulla
,
J. Electron. Mater.
41
,
837
(
2012
).
43.
T. T.
Tran
,
D.
Pastor
,
H. H.
Gandhi
,
L. A.
Smillie
,
A. J.
Akey
,
M. J.
Aziz
, and
J. S.
Williams
,
Appl. Phys. Lett.
119
,
183102
(
2016
).
44.
P. A.
Stolk
et al,
J. Appl. Phys.
81
,
6031
(
1997
).
45.
N. E. B.
Cowern
,
D.
Alquier
,
M.
Omri
,
A.
Claverie
, and
A.
Nejim
,
Nucl. Instrum. Methods Phys. Res., Sect. B
148
,
257
(
1999
).
46.
S.
Solmi
,
M.
Ferri
,
M.
Bersani
,
D.
Giubertoni
, and
V.
Soncini
,
J. Appl. Phys.
94
,
4950
(
2003
).
47.
S. T.
Picraux
and
P. S.
Peercy
,
MRS Bull.
12
,
22
(
1987
).
48.
L.
Qian
,
J.
Tong
,
W.
Fan
,
J. S.
Pan
, and
D. H.
Zhang
,
IEEE J. Quantum Electron.
56
,
1
(
2019
).
49.
P.
Onufrijevs
et al,
Opt. Laser Technol.
128
,
106200
(
2020
).
50.
L. H.
Grey
,
H.-Y.
Nie
, and
M. C.
Biesinger
,
Appl. Surf. Sci.
653
,
159319
(
2024
).
51.
G.
Greczynski
and
L.
Hultman
,
ChemPhysChem
18
,
1507
(
2017
).
52.
G.
Greczynski
and
L.
Hultman
,
Appl. Surf. Sci.
606
,
154855
(
2022
).
53.
G.
Greczynski
and
L.
Hultman
,
Appl. Surf. Sci.
451
,
99
(
2018
).
54.
G.
Greczynski
,
O.
Pshyk
, and
L.
Hultman
,
Sci. Adv.
9
,
eadi3192
(
2023
).
55.
K. H.
Wu
and
C. W.
Li
,
Materials
8
,
5922
(
2015
).
56.
S.
Adachi
,
Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors
(
John Wiley & Sons
,
Gunma
,
2009
).
You do not currently have access to this content.