50 years ago, television screens used bulky cathode ray tubes (CRTs) with a size limited to about 70 cm in diagonal (28 in.), while flat panel displays belonged to the realm of science fiction. Although the performance of CRTs in terms of energy consumption, size, and color rendering slowly improved, there were numerous applications where flat panel displays would present a tremendous advantage, notably for confined spaces and in portable equipment. Starting from the 1970s, AC thin-film electroluminescence (ACTFEL) was investigated as a high performance alternative to the—also emerging—liquid crystal displays (LCDs) and plasma display panels (PDPs). For a number of years, ACTFEL developed from the phase of fundamental research to commercial products (for monochrome displays) and full color prototype displays. However, due to the fast development and strong cost reduction of LCDs, ACTFEL did not remain competitive and most of the research activities were ceased. The current overview sketches a brief history of the ACTFEL technology, its merits and limitations, and the reasons why such displays still have their use in some niche applications.

1.
E.
Williams
,
R.
Kahhat
,
B.
Allenby
,
E.
Kavazanjian
,
J.
Kim
, and
M.
Xu
,
Environ. Sci. Technol.
42
,
6446
(
2008
).
2.
J. P.
Boeuf
,
J. Phys. D: Appl. Phys.
36
,
R53
(
2003
).
3.
Y.
Yoshida
,
A.
Ishizuka
, and
H.
Makishima
,
Mater. Chem. Phys.
40
,
267
(
1995
).
4.
H. C.
Swart
,
L.
Oosthuizen
,
P. H.
Holloway
, and
G. L. P.
Berning
,
Surf. Interface Anal.
26
,
337
(
1998
).
5.
P. H.
Holloway
,
T. A.
Trottier
,
B.
Abrams
,
C.
Kondoleon
,
S. L.
Jones
,
J. S.
Sebastian
,
W. J.
Thomas
, and
H.
Swart
,
J. Vac. Sci. Technol. B
17
,
758
(
1999
).
6.
H. J.
Round
, “
Electric world
,” in
Semiconductor Devices: Pioneering Papers
, edited by S. M. Sze (
World Scientific
,
Singapore
,
1991
).
7.
B.
Gudden
and
R.
Pohl
,
Z. Phys.
2
,
192
(
1920
).
8.
10.
N. A.
Vlasenko
and
Y. A.
Popkov
,
Opt. Spektrosk.
8
,
81
(
1960
).
11.
M.
Warkentin
,
F.
Bridges
,
S. A.
Carter
, and
M.
Anderson
,
Phys. Rev. B
75
, 075301 (
2007
).
12.
F.
Chen
,
A. H.
Kitai
, and
Y.
Xiang
,
J. Electrochem. Soc.
156
,
H585
(
2009
).
13.
M.
Bredol
and
H. S.
Dieckhoff
,
Materials
3
,
1353
(
2010
).
15.
A.
Vecht
,
J. Vac. Sci. Technol.
10
,
789
(
1973
).
16.
L.
Wang
,
L.
Xiao
,
H. S.
Gu
, and
H. D.
Sun
,
Adv. Opt. Mater.
7
, 1801154 (
2019
).
17.
M. J.
Russ
and
D. I.
Kennedy
,
J. Electrochem. Soc.
114
,
1066
(
1967
).
18.
See www.lumineq.com (Lumineq, Espoo, Finland), Vol. 2024, pp. Lumineq Oy.
19.
Y.
Liu
,
M.
Xu
,
H.
Long
,
R. B.
Vasiliev
,
S.
Li
,
H.
Meng
, and
S.
Chang
, “
Alternating current electroluminescence devices: recent advances and functional applications
,”
Mater. Horiz.
(in press) (
2024
).
20.
A. N.
Krasnov
and
P. G.
Hofstra
,
Prog. Cryst. Growth Charact. Mater.
42
,
65
(
2001
).
21.
R.
Mach
and
G. O.
Muller
,
Phys. Status Solidi A
69
,
11
(
1982
).
22.
J. F.
Wager
and
P. D.
Keir
,
Annu. Rev. Mater. Sci.
27
,
223
(
1997
).
23.
P. D.
Rack
and
P. H.
Holloway
,
Mater. Sci. Eng. R Rep.
21
,
171
(
1998
).
24.
H.
Hamada
,
I.
Yoshida
,
D.
Carkner
,
X.
Wu
,
M.
Kutsukake
, and
K.
Oda
,
J. ITE
62
,
1604
(
2008
).
25.
D.
Poelman
,
D.
Wauters
,
J.
Versluys
, and
R. L.
Van Meirhaeghe
,
J. Appl. Phys.
90
,
248
(
2001
).
26.
J. C.
Heikenfeld
and
A. J.
Steckl
, in
Information Display
(Society for Information Display, New York,
2003
), p.
6
.
27.
D.
Wauters
,
D.
Poelman
,
R. L.
Van Meirhaeghe
, and
F.
Cardon
,
J. Lumin.
91
,
1
(
2000
).
29.
S.
Tanaka
,
H.
Yoshiyama
,
J.
Nishiura
,
S.
Ohshio
,
H.
Kawakami
, and
H.
Kobayashi
,
Proc. SID
29
,
305
(
1988
).
30.
V.
Shanker
,
S.
Tanaka
,
M.
Shiiki
,
H.
Deguchi
,
H.
Kobayashi
, and
H.
Sasakura
,
Appl. Phys. Lett.
45
,
960
(
1984
).
31.
P. F.
Smet
,
I.
Moreels
,
Z.
Hens
, and
D.
Poelman
,
Materials
3
,
2834
(
2010
).
32.
W.
Glass
,
A.
Kale
,
N.
Shepherd
,
M.
Davidson
,
D.
DeVito
, and
P. H.
Holloway
,
J. Vac. Sci. Technol. A
25
,
492
(
2007
).
33.
D.
Wauters
,
D.
Poelman
,
R. L.
Van Meirhaeghe
, and
F.
Cardon
,
J. Phys.: Condens. Matter
12
,
3901
(
2000
).
34.
P. F.
Smet
,
J.
Van Gheluwe
,
D.
Poelman
, and
R. L.
Van Meirhaeghe
,
J. Lumin.
104
,
145
(
2003
).
35.
D.
Poelman
,
R. L.
VanMeirhaeghe
,
B. A.
Vermeersch
, and
F.
Cardon
,
J. Phys. D: Appl. Phys.
30
,
465
(
1997
).
36.
D.
Poelman
,
R. L.
Vanmeirhaeghe
,
W. H.
Laflere
, and
F.
Cardon
,
J. Lumin.
52
,
259
(
1992
).
37.
J.
Ihanus
,
E.
Lambers
,
P. H.
Holloway
,
M.
Ritala
, and
M.
Leskelä
,
J. Cryst. Growth
260
,
440
(
2004
).
38.
D.
Poelman
,
R.
Vercaemst
,
R. L.
Vanmeirhaeghe
,
W. H.
Laflere
, and
F.
Cardon
,
J. Lumin.
65
,
7
(
1995
).
39.
N.
Miura
,
M.
Kawanishi
,
H.
Matsumoto
, and
R.
Nakano
,
Jpn. J. Appl. Phys.
38
,
L1291
(
1999
).
40.
Y. A.
Ono
,
Electroluminescent Displays
(
World Scientific
, Singapore,
1995
).
41.
M.
Tiitta
and
L.
Niinisto
,
Chem. Vap. Depos.
3
,
167
(
1997
).
42.
J. A.
Hart
,
S. A.
Lenway
, and
T.
Murtha
, “
A history of electroluminescent displays
,” Indiana University, Bloomington,
1999
, pp.
1
18
, available https://www.academia.edu/1359693/A_history_of_electroluminescent_displays.
You do not currently have access to this content.