Ag/Nb:SrTiO3(NSTO)/Ag and Au/NSTO/Ag structures were prepared and their current–voltage curves were studied in detail. The Ag/NSTO/Ag structure can demonstrate a pronounced resistive switching effect and the characteristics of its resistance change sequence as demonstrated in the I–V curves are significantly different from those of the Au/NSTO/Ag structure. Under a unipolar current, the Ag/NSTO/Ag structure translates first from a low-resistance state (LRS) to a high-resistance state (HRS) and then from the HRS to the LRS. However, the Au/NSTO/Ag structure only shows a transition from the HRS to the LRS. The phenomenon is analyzed taking into account the migration of oxygen ions and the electrochemical reaction of the Ag electrode, which lead to the formation of the Ag2O insulation layer as well as Ag conductive filaments in the Ag/NSTO/Ag structure and a change in the barrier height of the Au/NSTO interface.

1.
Z. R.
Wang
,
H. W.
Wu
,
G. W.
Burr
,
C. S.
Hwang
,
K. L.
Wang
,
Q.
Xia
, and
J. J.
Yang
,
Nat. Rev. Mater.
5
,
173
(
2020
).
2.
A. R.
Patil
,
T. D.
Dongale
,
R. K.
Kamat
, and
K. Y.
Rajpure
,
Mater. Today Commun.
34
,
105356
(
2023
).
3.
P.
Guan
,
Y.
Sun
,
T.
Wan
,
X.
Lin
,
Z.
Xu
, and
D.
Chu
,
Mater. Sci. Technol.
33
,
2010
(
2017
).
4.
A. S.
Sokolov
et al,
Appl. Surf. Sci.
434
,
822
(
2018
).
5.
R.
Waser
,
J. Nanosci. Nanotechnol.
12
,
7628
(
2012
).
7.
T.
Shi
,
R.
Wang
,
Z. H.
Wu
,
Y. Z.
Sun
,
J. J.
An
, and
Q.
Liu
,
Small Struct.
2
,
2000109
(
2021
).
8.
P.
Roy
et al,
Adv. Electron. Mater.
8
,
2101392
(
2022
).
9.
J.
Li
,
G.
Yang
,
Y.
Wu
,
W.
Zhang
, and
C.
Jia
,
Phys. Status Solidi A
215
,
1700912
(
2018
).
10.
S.
Kunwar
et al,
Adv. Electron. Mater.
9
,
2200816
(
2023
).
11.
X. J.
Wang
,
Q.
Zhou
,
H.
Li
,
C.
Hu
,
L. L.
Zhang
,
Y.
Zhang
,
Y. H.
Zhang
,
Y.
Sui
, and
B.
Song
,
Appl. Phys. Lett.
112
,
122103
(
2018
).
12.
Z. M.
Xu
,
T. H.
Ji
,
S. L.
Zhang
,
P. Y.
Guan
,
J. S.
Elliott
,
T.
Wan
,
C.
Cazorla
, and
D. W.
Chu
,
Mater. Sci. Technol.
39
,
1180
(
2023
).
13.
M. A. K. Y.
Shah
,
S.
Rauf
,
B.
Zhu
,
N.
Mushtaq
,
M.
Yousaf
,
P. D.
Lund
,
C.
Xia
, and
M. I.
Asghar
,
ACS Appl. Enery Mater.
4
,
365
(
2021
).
15.
R.
Buzio
,
A.
Gerbi
,
A.
Gadaleta
,
L.
Anghinolfi
,
F.
Bisio
,
E.
Bellingeri
,
A. S.
Siri
, and
D.
Marrè
,
Appl. Phys. Lett.
101
,
243505
(
2012
).
16.
Y. H.
Wang
,
X. L.
Shi
,
K. H.
Zhao
,
G. L.
Xie
,
S. Y.
Huang
, and
L. W.
Zhang
,
Appl. Surf. Sci.
364
,
718
(
2016
).
17.
J. L.
Li
,
W.
Guo
,
Y. D.
Qiao
,
L.
Yao
,
Z. Q.
He
,
F. D.
Wang
,
Y. H.
Wang
, and
F. P.
Wang
,
Appl. Phys. Lett.
123
,
151603
(
2023
).
18.
R.
Buzio
and
A.
Gerbi
,
J. Phys. D: Appl. Phys.
57
,
395104
(
2024
).
19.
R.
Buzio
,
A.
Gerbi
,
E.
Bellingeri
, and
D.
Marré
,
Appl. Phys. Lett.
113
,
141604
(
2018
).
20.
21.
G.
Bersuker
et al,
J. Appl. Phys.
110
,
124518
(
2011
).
22.
C. P.
Singh
,
V. P.
Singh
,
H.
Ranjan
, and
S. K.
Pandey
,
Ceram. Int.
50
,
4092
(
2024
).
23.
G. B.
Hoflund
,
Z. F.
Hazos
, and
G. N.
Salaita
,
Phys. Rev. B
62
,
11126
(
2000
).
24.
A. B.
Posadas
,
K. J.
Kormondy
,
W.
Guo
,
P.
Ponath
,
J.
Geler-Kremer
,
T.
Hadamek
, and
A. A.
Demkov
,
J. Appl. Phys.
121
,
105302
(
2017
).
25.
H. K.
Yoo
et al,
Appl. Phys. Lett.
98
,
183507
(
2011
).
26.
H. T.
Xu
,
D. H.
Kim
,
Z.
Xiahou
,
Y.
Li
,
M. Y.
Zhu
,
B.
Lee
, and
C. L.
Liu
,
J. Alloys Compd.
658
,
806
(
2016
).
27.
A.
Guo
,
H.
Bai
,
Q.
Liang
,
L.
Feng
,
X.
Su
,
G.
Van Tendeloo
, and
J.
Wu
,
Adv. Electron. Mater.
8
,
2200850
(
2022
).
28.
K. N.
Rathod
et al,
Curr. Appl. Phys.
28
,
98
(
2021
).
29.
M. M. H.
Tanim
,
B.
Sueoka
,
Z.
Xiao
,
K. Y.
Cheong
, and
F.
Zhao
,
Nanotechnology
33
,
495705
(
2022
).
You do not currently have access to this content.