We present a chromatic deflection aberration-free beam-image-shifting technique for low-voltage scanning electron microscopy. The technique utilizes a Wien filter to correct the chromatic deflection aberration induced by the beam-image shift. Experimental results demonstrated that this method significantly improves spatial resolution across a large field of view (FOV) of 28 × 28 μm2, covered by the beam-image shift. By correcting the chromatic deflection aberration, the degradation rate of the spatial resolution at the corner of the FOV relative to its center reduced from a maximum of 16% to 8%. The developed Wien filter responded 60% faster than the beam-image shift, eliminating the need for additional settling time for correction. Furthermore, we applied the presented technique to semiconductor pattern measurement and showed significant potential to improve the critical dimension uniformity in the FOV covered by the beam-image shift. We believe that the proposed method provides a practical and cost-effective amelioration as a beam-image-shifting technique.

2.
3.
K.
Nakamae
,
Meas. Sci. Technol.
32
,
052003
(
2021
).
4.
S.
Radulović
,
S.
Sunkara
,
R.
Rachel
, and
G.
Leitinger
,
Histochem. Cell Biol.
158
,
203
(
2022
).
5.
B.
Bunday
,
A.
Cepler
,
A.
Cordes
, and
A.
Arceo
, “
CD-SEM metrology for sub-10 nm width features
,”
Metrology, Inspection, and Process Control for Microlithography XXVIII
, San Jose, CA, USA, 2 April 2014 (
SPIE
, Bellingham, WA,
2014
), Vol.
9050
, pp.
238
257
.
7.
M. S.
Bronsgeest
,
J. E.
Barth
,
L. W.
Swanson
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
26
,
949
(
2008
).
8.
L.
Reimer
, “
Electron optics of a scanning electron microscope
,” in
Scanning Electron Microscopy: Physics of Image Formation and Microanalysis
(
Springer
, Berlin,
1998
), pp.
13
56
.
9.
J.
Zach
and
M.
Haider
,
Nucl. Instrum. Methods Phys. Res. Sect. A
363
,
316
(
1995
).
10.
M.
Steigerwald
,
C.
Hendrich
,
D.
Preikszas
, and
K.
Schubert
, Presentation from NIST Frontiers (2013).
11.
P. W.
Hawkes
,
Philos. Transact. A Math. Phys. Eng. Sci.
367
,
3637
(
2009
).
12.
Z. H.
Cheng
,
H.
Dohi
,
S.
Hayashi
,
K.
Hirose
, and
H.
Kazumi
,
Metrology, Inspection, and Process Control for Microlithography XXXIII
, San Jose, CA, 11 April 2019 (
SPIE
, Bellingham, WA,
2019
), Vol.
10959
, pp.
406
414
.
13.
R.
Young
,
S.
Henstra
,
J.
Chmelik
,
T.
Dingle
,
A.
Mangnus
,
G.
van Veen
, and
I.
Gestmann
,
Scanning Microscopy 2009
, Monterey, CA, 22 May 2009 (
SPIE
, Bellingham, WA,
2009
), Vol.
7378
, p.
27
.
14.
T.
Ogawa
,
Y.
Yamazawa
,
S.
Kawai
,
A.
Mouri
,
J.
Katane
,
I.-Y.
Park
,
Y.
Takai
, and
T.
Agemura
,
Microsc. Microanal.
28
,
412
(
2022
).
15.
16.
J. N.
Cash
,
S.
Kearns
,
Y.
Li
, and
M. A.
Cianfrocco
,
IUCrJ
7
,
1179
(
2020
).
17.
A.
Khursheed
,
Scanning Electron Microscope Optics and Spectrometers
(
World Scientific
, Singapore,
2011
).
18.
H.
Ohiwa
,
J. Vac. Sci. Technol.
15
,
849
(
1978
).
19.
X.
Liu
,
X.
Zhang
,
Y.
Zhao
,
A.
Desai
, and
Z. W.
Chen
,
J. Vac. Sci. Technol. B
22
,
3534
(
2004
).
20.
Y.
Zhao
and
A.
Khursheed
,
Charged Particle Optics III
, San Diego, CA, 25 September 1997 (
SPIE
, Bellingham, WA,
1997
), Vol.
3155
, p.
37
.
21.
D.
Bizen
,
S.
Mizutani
,
M.
Sakakibara
,
M.
Suzuki
, and
Y.
Momonoi
,
J. Micro/Nanolithogr. MEMS MOEMS
18
,
034004
(
2019
).
22.
P.
Hansen
,
C.
Baumgarten
,
H.
Batelaan
, and
M.
Centurion
,
Appl. Phys. Lett.
101
,
083501
(
2012
).
24.
S.
Kim
,
B. C.
Park
,
I.
Oh
, and
J. S.
Kim
,
Microsc. Microanal.
22
,
628
(
2016
).
25.
M. T.
Postek
,
J. Res. Natl. Inst. Stand. Technol.
99
,
641
(
1994
).
26.
H. H.
Rose
,
J. Electron Microsc.
58
,
77
(
2009
).
27.
T.
Itzkovich
,
A.
Avakrat
,
S.
Levi
,
O.
Baum
,
N.
Amit
, and
K.
Houchens
,
Metrology, Inspection, and Process Control for Microlithography XXXIII
, San Jose, CA, 7 May 2019 (
SPIE
, Bellingham, WA,
2019
), Vol.
10959
, pp.
371
378
.
You do not currently have access to this content.