This study explores Ag/ZnO thin films on glass (Corning 0211) substrates, which were deposited using dc/rf magnetron reactive sputtering at varying Ag-sputter powers. The impact of Ag-sputter power on physical properties, such as structural, surface, compositional, optical, and electrical properties, is systematically explored. Grazing angle x-ray diffraction affirms a single-phase hexagonal wurtzite ZnO structure in all films, predominantly oriented along (002) normal to the substrate. Thin films deposited at 90 W Ag-sputter power exhibit superior structural and morphological properties, including greatest crystallite and grain size, minimum stress, and roughness. Electrical studies indicate that the material exhibits a semiconducting nature, with its electrical resistivity decreasing to a minimum of 0.8 Ω cm at 95 W. At this level of Ag sputter power, the films demonstrate low resistivity, high mobility (0.49 cm2/V s), a charge carrier concentration of 9.6 × 1019 cm−3, and an optical transmittance of 79%, along with an optical band gap energy (Eg) of 3.06 eV. This underscores the influence of Ag sputter power in tailoring Ag/ZnO thin films for optoelectronic applications.

1.
S.
Usha
and
S.
Suraj
,
J. Pure Appl. Phys.
10
,
10
(
2022
).
2.
M.
Salem
,
H.
Ghannam
,
A.
Almohammedi
,
J.
Salem
,
Y.
Litaiem
,
I.
Massoudi
,
M.
Gassoumi
, and
M.
Gaidi
,
Silicon
15
,
7321
(
2023
).
3.
I.
López
,
L.
Garza-Tovar
,
E. T.
Adesuji
, and
M.
Sanchez-Dominguez
, “
Colloidal core-shell metal, metal oxide nanocrystals, and their applications
,” in
Colloidal Metal Oxide Nanoparticles
(
Elsevier
, Netherlands,
2020
), pp.
125
181
.
4.
H.
Krysova
,
V.
Mansfeldova
,
H.
Tarabkova
,
A.
Pisarikova
,
Z.
Hubicka
, and
L.
Kavan
,
J. Solid State Electrochem.
28
,
2531
(
2024
).
5.
6.
D. J.
Rani
,
A.
GuruSampath Kumar
, and
T. S.
Rao
,
J. Alloys Compd.
694
,
694
(
2017
).
7.
A.
GuruSampath Kumar
,
T.
Sofi Sarmash
,
L.
Obulapathi
,
D.
Jhansi Rani
,
T.
Subba Rao
, and
K.
Asokan
,
Thin Solid Films
605
,
102
(
2016
).
8.
S. H.
Choe
,
Y. S.
Kim
,
J. Y.
Choi
,
Y. J.
Park
,
B. C.
Cha
,
Y. M.
Kong
, and
D.
Kim
,
Korean J. Met. Mater.
57
,
506
(
2019
).
9.
F.
Lekoui
,
M.
Ouchabane
,
H.
Akkari
,
S.
Hassani
, and
D.
Dergham
,
Mater. Res. Express
5
,
106406
(
2018
).
10.
F.
Lekoui
,
R.
Amrani
,
S.
Hassani
,
E.
Garoudja
,
W.
Filali
,
M.
Ouchabane
,
N.
Hendaoui
, and
S.
Oussalah
,
Opt. Mater.
150
,
115151
(
2024
).
11.
R.
Ramadan
,
S.
Dadgostar
,
M.
Manso –Silván
,
R.
Pérez-Casero
,
M.
Hernandez-Velez
,
J.
Jimenez
, and
O.
Sanchez
,
Mater. Sci. Eng. B
276
,
115558
(
2022
).
12.
G. O.
Rabell
,
M. R. A.
Cruz
, and
I.
Juárez-Ramírez
,
Mater. Sci. Semicond. Process.
134
,
105985
(
2021
).
13.
A.
Gurusampath Kumar
,
T. S.
Sarmash
,
D. J.
Rani
,
L.
Obulapathi
,
G. V. V. B.
Rao
,
T. S.
Rao
, and
K.
Asokan
,
J. Alloys Compd.
665
,
86
(
2016
).
14.
R.
Swanepoel
,
J. Phys. E: Sci. Instr.
16
,
1214
(
1983
).
15.
A.
GuruSampath Kumar
,
X.
Li
,
Y.
Du
,
Y.
Geng
, and
X.
Hong
,
Appl. Surf. Sci.
509
,
144770
(
2020
).
16.
Z.
Ning
,
Y.
Wang
,
S.
Li
,
K.
Tang
, and
M.
Wen
,
Vacuum
210
,
111888
(
2023
).
17.
G. S.
Kumar
,
X.
Li
,
Y.
Du
,
Y.
Geng
, and
X.
Hong
,
J. Alloys Compd.
798
,
467
(
2019
).
18.
S. K.
Pendyala
,
K.
Thyagarajan
,
A. G.
Kumar
, and
L.
Obulapathi
,
J. Microw. Power Electromagn. Energy
53
,
3
(
2019
).
19.
A.
Thote
et al,
ACS Appl. Electron. Mater.
1
,
389
(
2019
).
20.
D. J.
Rani
,
A. G. S.
Kumar
, and
T. S.
Rao
,
J. Coat. Technol. Res.
14
,
971
(
2017
).
21.
D. J.
Rani
,
A. G. S.
Kumar
,
T. S.
Sarmash
,
K.
Chandra Babu Naidu
,
M.
Maddaiah
, and
T. S.
Rao
,
JOM
68
,
1647
(
2016
).
22.
S.
Benramache
,
O.
Belahssen
,
A.
Arif
, and
A.
Guettaf
,
Optik
125
,
1303
(
2014
).
23.
S. K.
Esthappan
,
A. B.
Nair
, and
R.
Joseph
,
Compos. B Eng.
69
,
145
(
2015
).
24.
G. V.
Vijaya Bhaskara Rao
,
U.
Mahesh Kumar
,
L. N. V. H.
Soma Sundar
,
K.
Lakshmi Sarada
,
J.
Vijay Kumar
,
A.
GuruSampath Kumar
,
G.
Venkata Ramana
,
B. H.
Rao
,
L.
Obulapathi
, and
X.
Li
,
Braz. J. Phys.
54
,
120
(
2024
).
25.
S.
Roy
,
S.
Das
, and
C. K.
Sarkar
,
Int. Nano Lett.
6
,
199
(
2016
).
26.
T. T.
Ngoc Anh
,
T.
Thi Ha
,
N.
Viet Tuyen
, and
P.
Nguyen Hai
,
VNU J. Sci.: Math. Phys.
35
,
87
(
2019
).
27.
X.
Qu
,
R.
Zhang
,
P.
Zhang
,
X.
Cao
,
R.
Yu
, and
B.
Wang
,
Opt. Mater.
148
,
114879
(
2024
).
28.
M.
Karyaoui
,
D.
Ben Jemia
,
M.
Gannouni
,
I.
Ben Assaker
,
A.
Bardaoui
,
M.
Amlouk
, and
R.
Chtourou
,
Inorg. Chem. Commun.
119
,
108114
(
2020
).
29.
D. J.
Rani
,
A. G. S.
Kumar
,
L.
Obulapathi
, and
T. S.
Rao
,
IEEE Trans. Dielectr. Electr. Insul.
26
,
1134
(
2019
).
30.
H.
Chen
,
Y.
Qu
,
L.
Sun
,
J.
Peng
, and
J.
Ding
,
Phys. E
114
,
113602
(
2019
).
31.
F. K.
Shan
,
G. X.
Liu
,
W. J.
Lee
, and
B. C.
Shin
,
J. Cryst. Growth
291
,
328
(
2006
).
32.
B. H.
Rao
,
A. V.
Rao
,
A. G. S.
Kumar
, and
G. N.
Rao
,
Dig. J. Nanomater. Biostructures
16
,
1173
(
2021
).
33.
A. G.
Kumar
,
L.
Xuejin
,
X.
Hong
,
Y.
Geng
,
Y.
Du
, and
T. S.
Rao
,
Radiat. Phys. Chem.
162
,
107
(
2019
).
34.
N. M.
Rohith
,
P.
Kathirvel
,
S.
Saravanakumar
, and
L.
Mohan
,
Optik
172
,
940
(
2018
).
35.
D. J.
Borah
,
A. T. T.
Mostako
,
P. K.
Saikia
, and
P.
Dutta
,
Mater. Sci. Semicond. Process.
93
,
111
(
2019
).
36.
H.-B.
Kim
and
J.-J.
Kim
,
Opt. Express
28
,
11892
(
2020
).
37.
N.
Najafi
and
S. M.
Rozati
,
Mater. Res.
21
,
e20170933
(
2018
).
38.
C. H.
Tseng
,
W. H.
Wang
,
H. C.
Chang
,
C. P.
Chou
, and
C. Y.
Hsu
,
Vacuum
85
,
263
(
2010
).
You do not currently have access to this content.