GeSn films were simultaneously deposited on Si (100), Si (111), c-plane sapphire (Al2O3), and fused silica substrates to investigate the impact of the substrate on the resulting GeSn film. The electronic, structural, and optical properties of these films were characterized by temperature-dependent Hall-effect measurements, x-ray diffractometry, secondary ion mass spectrometry, and variable angle spectroscopic ellipsometry. All films were polycrystalline with varying degrees of texturing. The film on Si (100) contained only GeSn (100) grains, 40.4 nm in diameter. The film deposited on Si (111) contained primarily GeSn (111) grains, 36.4 nm in diameter. Both films deposited on silicon substrates were fully relaxed. The layer deposited on Al2O3 contained primarily GeSn (111) grains, 41.3 nm in diameter. The film deposited on fused silica was not textured, and the average grain size was 35.0 nm. All films contained ∼5.6 at. % Sn throughout the layer, except for the film deposited on Al2O3, which contained 7.5% Sn. The films deposited on Si (111), Al2O3, and fused silica exhibit p-type conduction over the entire temperature range, 10–325 K, while the layer deposited on the Si (100) substrate shows a mixed conduction transition from p-type at low temperature to n-type above 220 K. From ∼175 to 260 K, both holes and electrons contribute to conduction. Texturing of the GeSn film on Si (100) was the only characteristic that set this film apart from the other three films, suggesting that something related to GeSn (100) crystal orientation causes this transition from p- to n-type conduction.

1.
R.
Roucka
,
J.
Mathews
,
R. T.
Beeler
,
J.
Tolle
,
J.
Kouvetakis
, and
J.
Menéndez
,
Appl. Phys. Lett.
98
,
061109
(
2011
).
2.
Y. Y.
Zhou
et al,
J. Appl. Phys.
120
, 023102 (
2016
).
3.
J. D.
Gallagher
,
C. L.
Senaratne
,
P.
Sims
,
T.
Aoki
,
J.
Menéndez
, and
J.
Kouvetakis
,
Appl. Phys. Lett.
106
, 091103 (
2015
).
4.
J. P.
Gupta
,
N.
Bhargava
,
S.
Kim
,
T.
Adam
, and
J.
Kolodzey
,
Appl. Phys. Lett.
102
,
251117
(
2013
).
5.
6.
S.
Al-Kabi
et al,
Appl. Phys. Lett.
109
, 171105 (
2016
).
7.
V.
Reboud
et al,
Appl. Phys. Lett.
111
, 092101 (
2017
).
8.
10.
11.
Y. Y.
Zhou
et al,
Photonics Res.
10
,
222
(
2022
).
12.
S. Q.
Xu
,
W.
Wang
,
Y. C.
Huang
,
Y.
Dong
,
S.
Masudy-Panah
,
H.
Wang
,
X.
Gong
, and
Y. C.
Yeo
,
Opt. Express
27
,
5798
(
2019
).
13.
Y. H.
Huang
,
G. E.
Chang
,
H.
Li
, and
H. H.
Cheng
,
Opt. Lett.
42
,
1652
(
2017
).
14.
H. S.
Mączko
,
R.
Kudrawiec
, and
M.
Gladysiewicz
,
Sci. Rep.
6
, 34082 (
2016
).
16.
J.
Mathews
,
R.
Roucka
,
J.
Xie
,
S.-Q.
Yu
,
J.
Menéndez
, and
J.
Kouvetakis
,
Appl. Phys. Lett.
95
,
133506
(
2009
).
18.
C.
Chang
,
H.
Li
,
C. T.
Ku
,
S. G.
Yang
,
H. H.
Cheng
,
J.
Hendrickson
,
R. A.
Soref
, and
G.
Sun
,
Appl. Opt.
55
,
10170
(
2016
).
19.
S.
Zaima
,
O.
Nakatsuka
,
N.
Taoka
,
M.
Kurosawa
,
W.
Takeuchi
, and
M.
Sakashita
,
Sci. Technol. Adv. Mater.
16
,
043502
(
2015
).
20.
H.
Lin
,
R.
Chen
,
W. S.
Lu
,
Y. J.
Huo
,
T. I.
Kamins
, and
J. S.
Harris
,
Appl. Phys. Lett.
100
, 102109 (
2012
).
21.
P.
Moontragoon
,
R. A.
Soref
, and
Z.
Ikonic
,
J. Appl. Phys.
112
, 073106 (
2012
).
22.
J.
Mathews
,
R. T.
Beeler
,
J.
Tolle
,
C.
Xu
,
R.
Roucka
,
J.
Kouvetakis
, and
J.
Menéndez
,
Appl. Phys. Lett.
97
, 2211912 (
2010
).
23.
S.
Gupta
,
B.
Magyari-Köpe
,
Y.
Nishi
, and
K. C.
Saraswat
,
J. Appl. Phys.
113
, 073707 (
2013
).
24.
25.
Y.
Liu
,
J.
Yan
,
H. J.
Wang
,
B. W.
Cheng
, and
G. Q.
Han
,
Int. J. Thermophys.
36
,
980
(
2015
).
26.
P. F.
Guo
,
R.
Cheng
,
W.
Wang
,
Z.
Zhang
,
J. S.
Pan
,
E. S.
Tok
, and
Y. C.
Yeo
,
ECS J. Solid State Sci. Technol.
3
,
Q162
(
2014
).
28.
J. D.
Sau
and
M. L.
Cohen
,
Phys. Rev. B
75
, 045208 (
2007
).
29.
R.
Cheng
,
Z.
Chen
,
S.
Yuan
,
M.
Takenaka
,
S.
Takagi
,
G.
Han
, and
R.
Zhang
,
J. Semicond.
42
,
023101
(
2021
).
30.
R. W.
Olesinski
and
G. J.
Abbaschian
,
Bull. Alloy Phase Diagr.
5
,
265
(
1984
).
31.
N.
Bhargava
,
J. P.
Gupta
,
N.
Faleev
,
L.
Wielunski
, and
J.
Kolodzey
,
J. Electron. Mater.
46
,
1620
(
2017
).
32.
M.
Oehme
,
D.
Buca
,
K.
Kostecki
,
S.
Wirths
,
B.
Holländer
,
E.
Kasper
, and
J.
Schulze
,
J. Cryst. Growth
384
,
71
(
2013
).
33.
E.
Kasper
,
J.
Werner
,
M.
Oehme
,
S.
Escoubas
,
N.
Burle
, and
J.
Schulze
,
Thin Solid Films
520
,
3195
(
2012
).
34.
K. A.
Bratland
,
Y. L.
Foo
,
T.
Spila
,
H. S.
Seo
,
R. T.
Haasch
,
P.
Desjardins
, and
J. E.
Greene
,
J. Appl. Phys.
97
, 044904 (
2005
).
35.
J.
Taraci
et al,
J. Am. Chem. Soc.
123
,
10980
(
2001
).
36.
S.
Wirths
et al,
Thin Solid Films
557
,
183
(
2014
).
37.
J.
Aubin
and
J. M.
Hartmann
,
J. Cryst. Growth
482
,
30
(
2018
).
38.
Y. H.
Miao
et al,
Nanomaterials
11
,
2556
(
2021
).
39.
B.
Claflin
,
G. J.
Grzybowski
,
M. E.
Ware
,
S.
Zollner
, and
A. M.
Kiefer
,
Front. Mater.
7
, 44 (
2020
).
40.
G.
Grzybowski
,
M. E.
Ware
,
A.
Kiefer
, and
B.
Claflin
,
J. Vac. Sci. Technol. B
38
, 062209 (
2020
).
41.
H. F.
Li
,
J.
Brouillet
,
X. X.
Wang
, and
J. F.
Liu
,
Appl. Phys. Lett.
105
, 201107 (
2014
).
42.
H. F.
Li
,
J.
Brouillet
,
A.
Salas
,
X. X.
Wang
, and
J. F.
Liu
,
Opt. Mater. Express
3
,
1385
(
2013
).
43.
H.
Oka
,
T.
Tomita
,
T.
Hosoi
,
T.
Shimura
, and
H.
Watanabe
,
Appl. Phys. Express
11
,
011304
(
2018
).
44.
M.
Oehme
,
K.
Kostecki
,
M.
Schmid
,
F.
Oliveira
,
E.
Kasper
, and
J.
Schulze
,
Thin Solid Films
557
,
169
(
2014
).
45.
J.
Werner
,
M.
Oehme
,
M.
Schmid
,
M.
Kaschel
,
A.
Schirmer
,
E.
Kasper
, and
J.
Schulze
,
Appl. Phys. Lett.
98
, 061108 (
2011
).
46.
S.
Abdi
,
S.
Assali
,
M. R. M.
Atalla
,
S.
Koelling
,
J. M.
Warrender
, and
O.
Moutanabbir
,
J. Appl. Phys.
131
, 105304 (
2022
).
47.
L. M.
Wang
,
Y. C.
Zhang
,
H.
Sun
,
J.
You
,
Y. H.
Miao
,
Z. R.
Dong
,
T.
Liu
,
Z. M.
Jiang
, and
H. Y.
Hu
,
Nanoscale Adv.
3
,
997
(
2021
).
48.
A.
Nakatsuka
,
A.
Yoshiasa
, and
T.
Yamanaka
,
Acta Crystallogr., Sect. B
55
,
266
(
1999
).
49.
K.
Yu
,
D. L.
Zhang
,
H.
Cong
,
X.
Zhang
,
Y.
Zhao
,
B. W.
Cheng
, and
C. B.
Li
,
Presented at the 2016 IEEE 13th International Conference on Group IV Photonics (GFP)
Shanghai, China,
2016
.
50.
D.
Gayakwad
,
D.
Singh
,
R.
Kumar
,
Y. I.
Mazur
,
S. Q.
Yu
,
G. J.
Salamo
,
S.
Mahapatra
, and
K. R.
Khiangte
,
J. Cryst. Growth
,
618
,
127306
(
2023
).
51.
D. C.
Look
,
Electrical Characterization of GaAs Materials and Devices
(
Wiley
,
Chichester
,
1989
).
You do not currently have access to this content.