This work investigates the impact of various geometries, suitable for ohmic regrowth applications, on the growth rate of n+-InGaN for AlN/GaN heterojunctions. In the various regrowth regions, we modelled the n+-InGaN growth rate by taking into account the diffusion effect of the growth source on the surrounding mask, using a surface migration-induced model. Additionally, we find that the peaks of n+-InGaN at the edge of the regrowth region, when higher than the surface of the SiO2 mask, will significantly affect the diffusion of the growth source on the mask. The findings provide theoretical support for designing the growth thickness of n+-InGaN on different device structures with nonalloyed ohmic contacts via metal-organic chemical vapor deposition. Therefore, it can assist in determining the appropriate size of test structures, such as transmission line model and enhance the precision of n+ materials assessment on devices.

1.
K.
Shinohara
et al,
2011 International Electron Devices Meeting
,
Washington, DC
,
5–7 December 2011
(
IEEE
,
New York
,
2011
), pp.
19.1.1
19.1.4
.
2.
S.
Liu
et al,
IEEE Electron Device Lett.
43
,
1621
(
2022
).
3.
J.
Guo
et al,
IEEE Electron Device Lett.
44
,
590
(
2023
).
4.
H.
Du
,
Z.
Liu
,
L.
Hao
,
W.
Xing
,
H.
Zhou
,
S.
Zhao
,
J.
Zhang
, and
Y.
Hao
,
IEEE Electron Device Lett.
44
,
911
(
2023
).
5.
A. L.
Hickman
,
R.
Chaudhuri
,
S. J.
Bader
,
K.
Nomoto
,
L.
Li
,
J. C. M.
Hwang
,
H.
Grace Xing
, and
D.
Jena
,
Semicond. Sci. Technol.
36
,
044001
(
2021
).
6.
D.
Guerra
,
R.
Akis
,
F. A.
Marino
,
D. K.
Ferry
,
S. M.
Goodnick
, and
M.
Saraniti
,
IEEE Electron Device Lett.
31
,
1217
(
2010
).
7.
D. A.
Deen
,
D. F.
Storm
,
D. S.
Katzer
,
D. J.
Meyer
, and
S. C.
Binari
,
Solid-State Electron.
54
,
613
(
2010
).
8.
L.
Yang
et al,
ACS Appl. Electron. Mater.
4
,
3632
(
2022
).
9.
K.
Shinohara
et al,
IEEE Trans. Electron Devices
60
,
2982
(
2013
).
10.
L.
Qin
,
J.
Zhu
,
J.
Guo
,
S.
Liu
,
Y.
Zhou
,
M.
Li
,
B.
Zhang
, and
X.
Ma
,
2023 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP)
,
Chengdu
,
13–15 November 2023
(
IEEE
,
New York
,
2023
), pp.
1
3
.
11.
H.
Qie
,
J.
Liu
,
Q.
li
,
Q.
Sun
,
H.
Gao
,
X.
Sun
,
Y.
Zhou
, and
H.
Yang
,
Appl. Phys. Lett.
121
,
212106
(
2022
).
12.
A. L.
Rosa
and
J.
Neugebauer
,
Phys. Rev. B
73
,
205314
(
2006
).
13.
G.
Mula
,
C.
Adelmann
,
S.
Moehl
,
J.
Oullier
, and
B.
Daudin
,
Phys. Rev. B
64
,
195406
(
2001
).
14.
S.
Heikman
,
S.
Keller
,
S. P.
DenBaars
,
U. K.
Mishra
,
F.
Bertram
, and
J.
Christen
,
Jpn. J. Appl. Phys.
42
,
6276
(
2003
).
15.
T.
Huang
,
X.
Zhu
, and
K. M.
Lau
,
IEEE Electron Device Lett.
33
,
1123
(
2012
).
16.
S.
Nakamura
et al,
Appl. Phys. Lett.
72
,
211
(
1998
).
17.
B.
Wang
et al,
Crystals
12
, 1011 (
2022
).
18.
X.
Han
et al,
Mater. Sci. Semicond. Process.
87
,
181
(
2018
).
19.
E. C. H.
Kyle
,
S. W.
Kaun
,
E. C.
Young
, and
J. S.
Speck
,
Appl. Phys. Lett.
106
,
222103
(
2015
).
20.
E.
Cho
,
S.
Seo
,
C.
Jin
,
D.
Pavlidis
,
G.
Fu
,
J.
Tuerck
, and
W.
Jaegermann
,
J. Vac. Sci. Technol. B
27
,
2079
(
2009
).
21.
L.
Zhang
,
Z.
Cheng
,
Y.
He
,
J.
Xu
,
L.
Jia
,
X.
Wang
,
S.
Zhang
,
W.
Tan
, and
Y.
Zhang
,
Appl. Phys. Lett.
119
,
262104
(
2021
).
22.
S.
Nitta
,
M.
Kariya
,
T.
Kashima
,
S.
Yamaguchi
,
H.
Amano
, and
I.
Akasaki
,
Appl. Surf. Sci
159–160
,
421
(
2000
).
23.
S.
Nitta
,
T.
Kashima
,
M.
Kariya
,
Y.
Yukawa
,
S.
Yamaguchi
,
H.
Amano
, and
I.
Akasaki
,
MRS Internet J. Nitride Semicond. Res.
5
,
90
(
2000
).
24.
H. X.-B.
Chen Wei-Jie
,
Lin
Jia-Li
,
Hu
Guo-Heng
,
Liu
Ming-Gang
,
Yang
Yi-Bin
,
Chen
Jie
,
Wu
Zhi-Sheng
,
Liu
Yang
, and
Zhang
Bai-Jun
,
Chin. Phys. B
24
,
118101
(
2015
).
25.
M. M.
Rozhavskaya
,
W. V.
Lundin
,
S. I.
Troshkov
,
A. F.
Tsatsulnikov
, and
V. G.
Dubrovskii
,
Phys. Status Solidi A
212
,
851
(
2015
).
You do not currently have access to this content.