High vacuum packaging is the key manufacturing technology of passive vacuum devices. The inherent characteristics of narrow and long space and large surface-to-volume ratio make it challenging to effectively remove the desorption gas inside the device. To this end, the pressure distribution of two standard packaging methods during the pump-down process is investigated using the two-dimensional diffusion equation. Experiments and simulations show that a pressure gradient persists within the slit even when pumping reaches the quasi-equilibrium state. In addition, a Monte Carlo method based on the cosine law reveals that the high-frequency collisions of gas molecules with the walls impede the pumping process. Furthermore, the results indicate that for tube pumping, the number of collisions of gas molecules with the wall during transport within the gap is inversely proportional to the gap height. For edge pumping, the number of collisions is inversely proportional to the square of the gap height. This provides a theoretical basis for efficient high vacuum packaging and long-term pressure maintenance for passive vacuum devices.

1.
M.
Tilli
,
M.
Paulasto-Kröckel
,
M.
Petzold
,
H.
Theuss
,
T.
Motooka
, and
V.
Lindroos
,
Handbook of Silicon Based MEMS Materials and Technologies
(
Matthew Deans
,
Chennai
,
2020
).
2.
X.
Wang
,
S. J.
Bleiker
,
P.
Edinger
,
C.
Errando-Herranz
,
N.
Roxhed
,
G.
Stemme
,
K. B.
Gylfason
, and
F.
Niklaus
,
J. Microelectromech. Syst.
28
,
460
(
2019
).
3.
A. H.
Safavi-Naeini
,
S.
Gröblacher
,
J. T.
Hill
,
J.
Chan
,
M.
Aspelmeyer
, and
O.
Painter
,
Nature
500
,
185
(
2013
).
4.
A.
Cavalleri
et al,
Phys. Rev. Lett.
103
,
140601
(
2009
).
5.
M.
Armano
et al,
Phys. Rev. Lett.
126
,
131103
(
2021
).
6.
S. H.
Heo
,
H. J.
Kim
,
J. M.
Ha
, and
S. O.
Cho
,
Nanoscale. Res. Lett.
7
,
258
(
2012
).
7.
J. P.
Mcgilligan
et al,
Appl. Phys. Lett.
117
,
054001
(
2020
).
8.
A.
Bosseboeuf
,
S.
Lemettre
,
M.
Wu
,
J.
Moulin
,
P.
Coste
,
C.
Bessouet
,
S.
Hammami
,
C.
Renard
, and
L.
Vincent
,
Sensor Mater.
31
,
2825
(
2019
).
9.
I. P.
Prikhodko
,
B. R.
Simon
,
G.
Sharma
,
S. A.
Zotov
,
A. A.
Trusov
, and
A. M.
Shkel
,
P. Soc. Photo-opt. Ins.
2013
,
000705
.
10.
H.
Cao
,
C. H.
Vermeer
,
S.
Vanapalli
,
H. J.
Holland
, and
H. J. M.
Ter Brake
,
J. Vac. Sci. Technol. A
33
,
061601
(
2015
).
11.
S.
Yang
and
C.
Lai
,
10th International Conference on Reliability, Maintainability and Safety (ICRMS)
, Guangzhou, China, 6–8 August 2014 (
IEEE
,
Guangzhou
,
2014
), p.
230
.
12.
Z.
Mei
,
H.
Bi
,
Q.
Cao
,
W.
Lin
,
B.
Wu
, and
X.
Wang
,
Vacuum
211
,
111958
(
2023
).
13.
S.
Memon
and
P. C.
Eames
,
Energ. Buildings
227
,
110430
(
2020
).
14.
R.
Dolesi
et al,
Phys. Rev. D
84
,
063007
(
2011
).
15.
J. A.
Rushton
,
M.
Aldous
, and
M. D.
Himsworth
,
Rev. Sci. Instrum.
85
,
121501
(
2014
).
16.
J. I.
Han
,
M. G.
Kwak
,
Y. K.
Park
,
S. C.
Lim
,
I. K.
Lee
,
K. I.
Cho
, and
H. J.
Yoo
,
J. Vac. Sci. Technol. B
16
,
1236
(
1998
).
17.
N.
Ng
and
R. E.
Collins
,
J. Vac. Sci. Technol. A
18
,
2549
(
2000
).
18.
B. H.
Stark
and
K.
Najafi
,
J. Microelectromech. Syst.
13
,
147
(
2004
).
19.
Y.
Saito
,
Y.
Sato
, and
N.
Matuda
,
J. Vac. Sci. Jpn.
50
,
366
(
2007
).
20.
M. M.
Torunbalci
,
S. E.
Alper
, and
T.
Akin
,
J. Microelectromech. Syst.
24
,
556
(
2015
).
21.
M. A.
Urquia
,
G.
Allegato
,
S.
Paleari
,
F.
Tripodi
,
L.
Oggioni
,
M.
Garavaglia
,
Y.
Nemirovsky
, and
T.
Blank
,
2020 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP)
, Lyon, France, 15–26 June 2020 (
IEEE
,
New York
,
2020
).
22.
M. M.
Koebel
,
H.
Manz
,
K. E.
Mayerhofer
, and
B.
Keller
,
Sol. Energ. Mat. Sol. C
94
,
1015
(
2010
).
23.
J. F.
Zhao
,
P. C.
Eames
,
T. J.
Hyde
,
Y.
Fang
, and
J.
Wang
,
Sol. Energy
81
,
1072
(
2007
).
24.
C. B.
Nakhosteen
and
K.
Jousten
,
Handbook of Vacuum Technology
(
Wiley
,
Berlin
,
2016
).
25.
O. B.
Malyshev
,
Vacuum
86
,
1669
(
2012
).
26.
Z.
Mei
,
H.
Bi
,
Q.
Cao
,
Y.
Wang
,
W.
Lin
,
J.
Ye
, and
X.
Wang
,
J. Vac. Sci. Technol. B
41
,
054202
(
2023
).
You do not currently have access to this content.