We present a comparison between interband cascade lasers (ICLs) with a six-stage active region emitting at 5 μm with AlSb/InAs superlattice claddings and with bulk A l 0.85 G a 0.15 A s 0.07 S b 0.93 claddings. Utilizing bulk AlGaAsSb claddings with their lower refractive index compared to the more commonly used AlSb/InAs superlattice claddings, the mode-confinement in the active region increases by 14.4% resulting in an improvement of the lasing threshold current density. For broad area laser and under pulsed excitation, the ICL with AlGaAsSb claddings shows a lower threshold current density of J t h = 396 A / c m 2 compared to J t h = 521 A / c m 2 of the ICL with superlattice claddings. Additionally, a higher characteristic temperature was obtained for the ICL with bulk claddings. Emission in pulsed operation is observed up to 65 °C.

1.
R. Q.
Yang
,
Superlattices Microstruct.
17
,
77
(
1995
).
2.
3.
J. A.
Nwaboh
,
Z.
Qu
,
O.
Werhahn
, and
V.
Ebert
,
Appl. Opt.
56
,
E84
(
2017
).
4.
M.
Von Edlinger
,
J.
Scheuermann
,
R.
Weih
,
L.
Nähle
,
M.
Fischer
,
J.
Koeth
,
S.
Höfling
, and
M.
Kamp
, “
Interband cascade lasers for applications in process control and environmental monitoring
,” in
Light Energy and Environment Congress EM2A
Suzhou, China, 2-5 Nov. 2015 (Optica Publishing Group, Washington D.C,
2015
), Vol. 5.
5.
A.
Sijan
,
Proc. SPIE
7843
,
748304
(
2009
).
6.
J. R.
Meyer
,
W. W.
Bewley
,
C. L.
Canedy
,
C. S.
Kim
,
M.
Kim
,
C. D.
Merritt
, and
I.
Vurgaftman
,
Photonics
7
,
75
(
2020
).
7.
I.
Vurgaftman
, R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, and S. Höfling,
J. Phys. D: Appl. Phys.
48
,
123001
(
2015
).
8.
M.
Kim
,
C. L.
Canedy
,
W. W.
Bewley
,
C. S.
Kim
,
J. R.
Lindle
,
J.
Abell
,
I.
Vurgaftman
, and
J. R.
Meyer
,
Appl. Phys. Lett.
92
,
191110
(
2008
).
9.
R.
Weih
,
A.
Bauer
,
M.
Kamp
, and
S.
Höfling
,
Opt. Mater. Express
3
,
1624
(
2013
).
10.
D. A.
Díaz-Thomas
,
O.
Stepanenko
,
M.
Bahriz
,
S.
Calvez
,
E.
Tournié
,
A. N.
Baranov
,
G.
Almuneau
, and
L.
Cerutti
,
Opt. Express
27
,
31425
(
2019
).
11.
X.
Zhao
et al,
IEEE Photonics Technol. Lett.
34
,
291
(
2022
).
12.
T.
Borca-Tasciuc
et al,
J. Appl. Phys.
92
,
4994
(
2002
).
13.
C.
Zhou
, I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, J. Abell, J. R. Meyer, A. Hoang, A. Haddadi, M. Razeghi, and M. Grayson,
Opt. Mater. Express
3
,
1632
(
2013
).
14.
S.
Adachi
,
J. Appl. Phys.
66
,
6030
(
1989
).
15.
A. B.
Djurišić
, E. H. Li, D. Rakić, and M. L. Majewski,
Appl. Phys. A
70
,
29–32
(
2000
).
16.
Y.
Jiang
, “
High-performance InAs-based interband cascade lasers
,”
Doctoral dissertation
(
University of Oklahoma
,
2016
).
17.
L.
Li
,
Y.
Jiang
,
H.
Ye
,
R. Q.
Yang
,
T. D.
Mishima
,
M. B.
Santos
, and
M. B.
Johnson
,
Appl. Phys. Lett.
106
,
251102
(
2015
).
18.
J. A.
Massengale
,
Y.
Shen
,
R. Q.
Yang
,
S. D.
Hawkins
, and
J. F.
Klem
,
Appl. Phys. Lett.
120
,
091105
(
2022
).
19.
Y.
Shen
,
J. A.
Massengale
,
R. Q.
Yang
,
S. D.
Hawkins
, and
A. J.
Muhowski
,
Appl. Phys. Lett.
123
,
041108
(
2023
).
20.
Y.
Shen
,
J. A.
Massengale
,
R. Q.
Yang
,
T. D.
Mishima
, and
M. B.
Santos
,
Photonics Nanosctruct. Fundam. Appl.
57
,
101193
(
2023
).
21.
C. L.
Canedy
,
M. V.
Warren
,
C. D.
Merritt
,
W. W.
Bewley
,
C. S.
Kim
,
M.
Kim
,
I.
Vurgaftman
, and
J. R.
Meyer
,
Proc. SPIE
10111
,
101110G
(
2017
).
22.
B.
Petrović
,
A.
Bader
,
J.
Nauschütz
,
T.
Sato
,
S.
Birner
,
R.
Weih
,
F.
Hartmann
, and
S.
Höfling
, “GaSb-based interband cascade laser with hybrid superlattice plasmon-enhanced claddings,” arXiv:2401.16816 (2024).
23.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
24.
P. C.
Mathur
and
S.
Jain
,
Phys. Rev. B
19
,
6
(
1979
).
25.
26.
R. J.
Stirn
and
W. M.
Becker
,
J. Appl. Phys.
37
,
3616
(
1966
).
27.
J.
Whitaker
,
Solid-State Electron.
8
,
649
(
1965
).
28.
H.
Ehsani
,
N.
Lewis
,
G. J.
Nichols
,
L.
Danielson
,
M. W.
Dashiell
,
Z. A.
Schellenbarger
, and
C. A.
Wang
,
J. Cryst. Growth
291
,
77
(
2006
).
29.
A.
Trellakis
,
T.
Zibold
,
T.
Andlauer
,
S.
Birner
,
R. K.
Smith
,
R.
Morschl
, and
P.
Vogl
,
J. Comput. Electron.
5
,
285
(
2006
).
30.
I.
Vurgaftman
,
W. W.
Bewley
,
C. L.
Canedy
,
C. S.
Kim
,
M.
Kim
,
C. D.
Merritt
,
J.
Abell
,
J. R.
Lindle
, and
J. R.
Meyer
,
Nat. Commun.
2
,
585
(
2011
).
31.
V.
Gopal
,
Semicond. Sci. Technol.
11
,
1070
(
1996
).
32.
S.
Höfling
,
R.
Weih
,
M.
Dallner
,
J.
Scheuermann
,
M. V.
Edlinger
,
L.
Nähle
,
M.
Fischer
,
J.
Koeth
, and
M.
Kamp
,
Proc. SPIE
9550, 95500F (
2015
).
33.
R. Q.
Yang
,
L.
Li
,
W.
Huang
,
S. M. S.
Razhad Rassel
,
J. A.
Gupta
,
A.
Bezinger
,
X.
Wu
,
S. G.
Razavipour
, and
G. C.
Aers
,
IEEE J. Sel. Quantum Electron.
25
,
1200108
(
2019
).
34.
W. W.
Bewley
,
C. L.
Canedy
,
C. S.
Kim
,
M.
Kim
,
C. D.
Merritt
,
J.
Abell
,
I.
Vurgaftman
, and
J. R.
Meyer
,
Opt. Express
20
,
20894
(
2012
).
35.
W.
Huang
,
S.
Hu
,
J.
Tu
,
L.
Zhang
,
K.
Tao
, and
P.
Wang
,
IEEE Photonics Technol. Lett.
36
,
91
(
2024
).
36.
K.
Zhang
,
Y.
Lin
,
W.
Zheng
,
R. Q.
Yang
,
H.
Lu
, and
Y.
Chen
,
J. Cryst. Growth
586
,
1266185
(
2022
).
37.
H.
Knötig
,
J.
Nauschütz
,
N.
Opačak
,
S.
Höfling
,
J.
Koeth
,
R.
Weih
, and
B.
Schwarz
,
Laser Photonics Rev.
16
,
9
(
2022
).
38.
W. W.
Bewley
,
J. R.
Lindle
,
C. L.
Canedy
,
M.
Kim
,
C. S.
Kim
,
D. C.
Larrabee
,
I.
Vurgaftman
, and
J. R.
Meyer
,
J. Appl. Phys.
103
,
013114
(
2008
).
You do not currently have access to this content.