We experimentally demonstrate a low-cost transfer process of GeSn ribbons to insulating substrates for short-wave infrared (SWIR) sensing/imaging applications. By releasing the original compressive GeSn layer to nearly fully relaxed state GeSn ribbons, the room-temperature spectral response of the photodetector is further extended to 3.2 μm, which can cover the entire SWIR range. Compared with the as-grown GeSn reference photodetectors, the fabricated GeSn ribbon photodetectors have a fivefold improvement in the light-to-dark current ratio, which can improve the detectivity for high-performance photodetection. The transient performance of a GeSn ribbon photodetector is investigated with a rise time of about 40 μs, which exceeds the response time of most GeSn (Ge)-related devices. In addition, this transfer process can be applied on various substrates, making it a versatile technology that can be used for various applications ranging from optoelectronics to large-area electronics. These results provide insightful guidance for the development of low-cost and high-speed SWIR photodetectors based on Sn-containing group IV low-dimensional structures.

2.
A. M.
Hoang
,
A.
Dehzangi
,
S.
Adhikary
, and
M.
Razeghi
,
Sci. Rep.
6
,
24144
(
2016
).
3.
E.
Thimsen
,
B.
Sadtler
, and
M. Y.
Berezin
,
Nanophotonics
6
,
1043
(
2017
).
4.
D. J.
Naczynski
,
C.
Sun
,
S.
Türkcan
,
C.
Jenkins
,
A. L.
Koh
,
D.
Ikeda
,
G.
Pratx
, and
L.
Xing
,
Nano Lett.
15
,
96
(
2015
).
5.
K.
Lin
,
P.
Huang
,
H.
Li
,
H. H.
Cheng
, and
G.
Chang
,
Opt. Lett.
46
,
3604
(
2021
).
6.
X.
Zhu
,
S.
Nelan
,
A. J.
Mercante
,
B.
Shopp
,
P.
Yao
,
S.
Shi
, and
D. W.
Prather
,
Opt. Mater. Express
12
,
3296
(
2022
).
7.
S.
Park
,
Y.
Kim
,
P. D.
Nguyen
,
J.
Jeon
,
B. S.
Chun
, and
S. J.
Lee
,
Adv. Funct. Mater.
2309897
(
2023
).
8.
S.
Park
et al,
Appl. Surf. Sci.
581
,
152421
(
2022
).
9.
J.
Rothman
et al,
J. Electron. Mater.
41
,
2928
(
2012
).
10.
G.
Chang
,
S.
Yu
, and
G.
Sun
,
Sensors
23
,
7386
(
2023
).
11.
X.
Cai
et al,
Adv. Opt. Mater.
12
,
2301724
(
2024
).
12.
H.
Tran
et al,
J. Appl. Phys.
124
,
013101
(
2018
).
14.
N.
Bhargava
,
M.
Coppinger
,
J. P.
Gupta
,
L.
Wielunski
, and
J.
Kolodzey
,
Appl. Phys. Lett.
103
,
041908
(
2013
).
15.
P.
Martyniuk
,
J.
Antoszewski
,
M.
Martyniuk
,
L.
Faraone
, and
A.
Rogalski
,
Appl. Phys. Rev.
1
,
041102
(
2014
).
16.
Y.
Tai
,
S.
An
,
P.
Huang
,
Y.
Jheng
,
K.
Lee
,
H.
Cheng
,
M.
Kim
, and
G.
Changa
,
Nanoscale
15
,
7745
(
2023
).
17.
R.
Hickey
,
N.
Fernando
,
S.
Zollner
,
J.
Hart
,
R.
Hazbun
, and
J.
Kolodzey
,
J. Vac. Sci. Technol. B
35
,
021205
(
2017
).
18.
C.
Xu
,
P. M.
Wallace
,
D. A.
Ringwala
,
S. L. Y.
Chang
,
C. D.
Poweleit
,
J.
Kouvetakis
, and
J.
Menendez
,
Appl. Phys. Lett.
114
,
212104
(
2019
).
20.
D.
Imbrenda
,
R. A.
Carrasco
,
R.
Hickey
,
N. S.
Fernando
,
S.
Zollner
, and
J.
Kolodzey
,
Appl. Phys. Lett.
119
,
162102
(
2021
).
21.
G.
Lin
et al,
J. Alloys Compd.
915
,
165453
(
2022
).
22.
Y.
Zhu
,
T.
Yang
,
H.
Ding
,
G.
Lin
,
C.
Li
,
W.
Huang
,
S.
Chen
,
J.
Wang
, and
J.
Xu
,
Appl. Surf. Sci.
656
,
159673
(
2024
).
23.
G.
Lin
et al,
Appl. Surf. Sci.
623
,
157086
(
2023
).
24.
C.
Xu
,
D.
Ringwala
,
D.
Wang
,
L.
Liu
,
C. D.
Poweleit
,
S. L. Y.
Chang
,
H. L.
Zhuang
,
J.
Menéndez
, and
J.
Kouvetakis
,
Chem. Mater.
31
,
9831
(
2019
).
25.
M. R. M.
Atalla
,
S.
Assali
,
A.
Attiaoui
,
C.
Lemieux-Leduc
,
A.
Kumar
,
S.
Abdi
, and
O.
Moutanabbir
,
Adv. Funct. Mater.
31
,
2006329
(
2021
).
26.
H.
Zhou
et al,
Opt. Express
28
,
10280
(
2020
).
28.
S.
Prucnal
et al,
Phys. Rev. Appl.
10
,
064055
(
2018
).
29.
A. B.
Talochkin
and
V. I.
Mashanov
,
Appl. Phys. Lett.
105
,
263101
(
2014
).
30.
N. M.
Eldose
,
H.
Stanchu
,
S.
Das
,
I.
Bikmukhametov
,
C.
Li
,
S.
Shetty
,
Y. I.
Mazur
,
S.
Yu
, and
G. J.
Salamo
,
Cryst. Growth Des.
23
,
7737
(
2023
).
31.
S.
An
,
S.
Wu
,
C. S.
Tan
,
G.
Chang
,
X.
Gong
, and
M.
Kim
,
J. Mater. Chem. C.
8
,
13557
(
2022
).
33.
Y.
Ishikawa
,
K.
Wada
,
J.
Liu
,
D. D.
Cannon
,
H.
Luan
,
J.
Michel
, and
L. C.
Kimerling
,
J. Appl. Phys.
98
,
013501
(
2005
).
34.
35.
G.
Lin
,
P.
Cui
,
T.
Wang
,
R.
Hickey
,
J.
Zhang
,
H.
Zhao
,
J.
Kolodzey
, and
Y.
Zeng
,
IEEE Trans. Nanotechnol.
20
,
846
(
2021
).
36.
S.
An
,
S.
Wu
,
K.
Lee
,
C. S.
Tan
,
Y.
Tai
,
G.
Chang
, and
M.
Kim
,
ACS Appl. Electron. Mater.
3
,
1780
(
2021
).
37.
S.
An
,
Y.
Liao
, and
M.
Kim
,
ACS Appl. Mater. Interfaces
13
,
61396
(
2021
).
38.
H.
Tran
et al,
J. Appl. Phys.
119
,
103106
(
2016
).
39.
See supplementary material online for XRD RSM analysis of GeSn as-grown sample, ToF-SIMS measurement setup with calibration procedure for Sn concentration, Raman curve fitting and Raman mapping point data for GeSn as-grown sample and GeSn ribbon sample, 1550 nm photo-response results of GeSn as-grown MSM PDs, TLM measurements for contact resistance study, spectral photo-response measurement setup and FDTD simulation for GeSn as-grown MSM PD and GeSn ribbon MSM PD.

Supplementary Material

You do not currently have access to this content.