Low-temperature plasmas (LTPs) are essential to manufacturing devices in the semiconductor industry, from creating extreme ultraviolet photons used in the most advanced lithography to thin film etching, deposition, and surface modifications. It is estimated that 40%–45% of all process steps needed to manufacture semiconductor devices use LTPs in one form or another. LTPs have been an enabling technology in the multidecade progression of the shrinking of device dimensions, often referred to as Moore’s law. New challenges in circuit and device design, novel materials, and increasing demands to achieve environmentally benign processing technologies require advances in plasma technology beyond the current state-of-the-art. The Department of Energy Office of Science Fusion Energy Sciences held a workshop titled Plasma Science for Microelectronics Nanofabrication in August 2022 to discuss the plasma science challenges and technical barriers that need to be overcome to continue to develop the innovative plasma technologies required to support and advance the semiconductor industry. One of the key outcomes of the workshop was identifying a set of priority research opportunities (PROs) to focus attention on the most strategic plasma science challenges to address to benefit the semiconductor industry. For each PRO, scientific challenges and recommended strategies to address those challenges were identified. This article summarizes the PROs identified by the workshop participants.

1.
C. A.
Murray
et al, “
Basic research needs for microelectronics,
OSTI Report No.
1545772
,
2018
.
2.
D. B.
Graves
,
C. B.
Labelle
, and
M. J.
Kushner
,
Plasma Science for Microelectronics Nanofabrication
(
Department of Energy Office of Science Fusion Energy Sciences
, Washington, D.C.,
2023
).
3.
Z.
Xiao
,
K.
Kisslinger
,
S.
Chance
, and
S.
Banks
,
Crystals
10
, 136 (
2020
).
4.
A.
Fischer
,
A.
Routzahn
,
R. J.
Gasvoda
,
J.
Sims
, and
T.
Lill
,
J. Vac. Sci. Technol. A
40
,
022603
(
2022
).
5.
P.
Schindler
,
M.
Logar
,
J.
Provine
, and
F. B.
Prinz
,
Langmuir
31
,
5057
(
2015
).
6.
K. J.
Kanarik
,
S.
Tan
,
W.
Yang
,
I. L.
Berry
,
Y.
Pan
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
39
,
0110401
(
2021
).
7.
G.
Antoun
,
T.
Tillocher
,
P.
Lefaucheux
,
J.
Faguet
,
K.
Maekawa
, and
R.
Dussart
,
Sci. Rep.
11
,
357
(
2021
).
8.
Public Law 116–260—Consolidated Appropriations Act, U.S.: House, 116th Congress, 2021.
9.
T.
Cha
,
Y.
Kim
,
S.
Lee
,
Y.
Cho
, and
H.
Chae
,
J. Vac. Sci. Technol. A
37
,
051302
(
2019
).
10.
See https://infuse.ornl.gov/news/first-round-2022-awards-announced-by-doe/ for information about “Infuse ORNL—First round 2022 awards announced by DOE.”
11.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
12.
S.
Sridhar
,
L.
Liu
,
E. W.
Hirsch
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Vac. Sci. Technol. A
34
,
061303
(
2016
).
13.
G. S.
Oehrlein
,
R. J.
Phaneuf
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
29
,
010801
(
2011
).
14.
E. W.
Hirsch
,
L.
Du
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
38
,
023009
(
2020
).
15.
K. J.
Kanarik
,
T.
Lill
,
E. A.
Hudson
,
S.
Sriraman
,
S.
Tan
,
J.
Marks
,
V.
Vahedi
, and
R. A.
Gottscho
,
J. Vac. Sci. Technol. A
33
,
020802
(
2015
).
16.
V.
Zardetto
,
B. L.
Williams
,
A.
Perrotta
,
F.
Di Giacomo
,
M. A.
Verheijen
,
R.
Andriessen
,
W. M. M.
Kessels
, and
M.
Creatore
,
Sustain. Energy Fuels
1
,
30
(
2017
).
17.
K.
Yi
,
D.
Liu
,
X.
Chen
,
J.
Yang
,
D.
Wei
,
Y.
Liu
, and
D.
Wei
,
Acc. Chem. Res.
54
,
1011
(
2021
).
18.
U. R.
Kortshagen
,
R. M.
Sankaran
,
R. N.
Pereira
,
S. L.
Girshick
,
J. J.
Wu
, and
E. S.
Aydil
,
Chem Rev
. 116,
11061
(
2016
).
19.
C. E.
Nebel
,
Semicond. Semimetals
103
,
73
(
2020
).
20.
P. F.
Kurunczi
,
J.
Guha
, and
V. M.
Donnelly
,
Phys. Rev. Lett.
96
,
018306
(
2006
).
21.
V. M.
Donnelly
,
J.
Guha
, and
L.
Stafford
,
J. Vac. Sci. Technol. A
29
,
010801
(
2011
).
22.
L. G.
Christophorou
and
J. K.
Olthoff
,
Fundamental Electron Interactions with Plasma Processing Gases
(
Springer Science+Business Media, New York
,
2004
).
23.
See https://www.quantemol.com/ for information about “Quantemol.”
24.
C. B.
Opal
,
W. K.
Peterson
, and
E. C.
Beaty
,
J. Chem. Phys.
55
,
4100
(
1971
).
25.
H. W.
Ellis
,
R. Y.
Pai
,
E. W.
McDaniel
,
E. A.
Mason
, and
L. A.
Viehland
,
At. Data Nucl. Data Tables
17
,
177
(
1976
).
26.
A. V.
Phelps
,
J. Appl. Phys.
76
,
747
(
1994
).
27.
See https://nl.lxcat.net/home for information about “nl.lxcat.net,”
28.
J. K.
Olthoff
and
K. E.
Greenberg
,
J. Res. Natl. Inst. Stand. Technol.
100
,
327
(
1995
).
29.
Y.
Yamamura
and
H.
Tawara
,
Atomic Data Nuclear Data Tables
62
,
149
(
1996
).
30.
J. W.
Butterbaugh
,
D. C.
Gray
, and
H. H.
Sawin
,
J. Vac. Sci. Technol. B
9
,
1461
(
1991
).
31.
J.
Tanaka
,
C. F.
Abrams
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
18
,
938
(
2000
).
32.
S.
Huang
,
C.
Huard
,
S.
Shim
,
S. K.
Nam
,
I.-C.
Song
,
S.
Lu
, and
M. J.
Kushner
,
J. Vac. Sci. Technol. A
37
,
031304
(
2019
).
33.
K.
Hernandez
,
A.
Press
,
M. J.
Goeckner
, and
L. J.
Overzet
,
J. Vac. Sci. Technol. B
39
,
024003
(
2021
).
34.
M.
Hirayama
,
A.
Teramoto
, and
S.
Sugawa
,
J. Vac. Sci. Technol. A
38
,
032408
(
2020
).
35.
Y. G.
Yook
et al,
J. Phys. D: Appl. Phys.
55
,
255202
(
2022
).
36.
M.
Mori
,
S.
Irie
,
Y.
Osano
,
K.
Eriguchi
, and
K.
Ono
,
J. Vac. Sci. Technol. A
39
,
043002
(
2021
).
37.
J.
Benschip
,
V.
Banine
,
S.
Lok
, and
E.
Loopstra
,
J. Vac. Sci. Technol. B
26
,
2204
(
2008
).
38.
D. C.
Brandt
,
M.
Purvis
,
I.
Fomenkov
,
D.
Brown
,
A.
Schafgans
,
P.
Mayer
, and
R.
Rafac
,
Proc. SPIE
11609
,
116091E
(
2021
).
39.
R. L.
Kauffman
,
D. W.
Phillion
, and
R. C.
Spitzer
,
Appl. Opt.
32
,
6897
(
1993
).
40.
S. A.
George
,
W. T.
Silfvast
,
K.
Takenoshita
,
R. T.
Bernath
,
C.-S.
Koay
,
G.
Shimkaveg
, and
M. C.
Richardson
,
Opt. Lett.
32
,
997
(
2007
).
41.
K.
Bergmann
,
S. V.
Danylyuk
, and
L.
Juschkin
,
J. Appl. Phys.
106
,
073309
(
2009
).
42.
E. R.
Hosler
,
O. R.
Wood II
, and
W. A.
Barletta
,
J. Micro/Nanolith. MEMS MOEMS
16
,
041009
(
2017
).
43.
J.
White
,
P.
Dunne
,
P.
Hayden
,
F.
O’Reilly
, and
G.
O’Sullivan
,
Appl. Phys. Lett.
90
,
181502
(
2007
).
44.
45.
E.
Verhoeven
et al,
Proc. SPIE
11609
,
1160908
(
2021
).
46.
I.
Fomenkov
et al,
Adv. Opt. Technol.
6
,
173
(
2017
).
47.
K.
Nishihara
et al,
Phys. Plasmas
15
,
056708
(
2008
).
48.
O. O.
Versolato
,
Plasma Sources Sci. Technol.
28
,
083001
(
2019
).
49.
J.
Beckers
,
T. v. d.
Ven
,
R. v. d.
Horst
,
D.
Astakhov
, and
V.
Banine
,
Appl. Sci.
9
,
2827
(
2019
).
50.
M.
Purvis
et al,
Proc. SPIE
11111
,
111110K
(
2019
).
51.
52.
M. D.
Seaberg
,
B.
Zhang
,
D. F.
Gardner
,
E. R.
Shanblatt
,
M. M.
Murnane
,
H. C.
Kapteyn
, and
D. E.
Adams
,
Optica
1
,
39
(
2014
).
53.
D. F.
Gardner
et al,
Nat. Photonics
,
11
,
259
(
2017
).
54.
F.
Barkusky
,
A.
Bayer
,
S.
Döring
,
P.
Grossmann
, and
K.
Mann
,
Opt. Express
18
,
4346
(
2010
).
55.
A.
Sasaki
,
A.
Sunahara
,
K.
Nishihara
,
T.
Nishikawa
,
K.
Fujima
,
T.
Kagawa
,
F.
Koike
, and
H.
Tanuma
,
High Energy Density Phys.
3
,
250
(
2007
).
56.
A.
Thoss
, see https://www.laserfocusworld.com/blogs/article/14039015/how-does-the-laser-technology-in-euv-lithography-work for information about “EUV lithography revisited” (last accessed August 29, 2019).
57.
B.
Hou
and
S.
Stapczynski
, “Chipmaking’s next big thing guzzles as much power as entire countries,” Bloomberg US Edition, 25 August 2022.
58.
R.
Schupp
et al,
Phys. Rev. Appl.
12
,
014010
(
2019
).
59.
K. M.
Nowak
,
T.
Ohta
,
T.
Suganuma
,
J.
Fujimoto
,
H.
Mizoguchi
,
A.
Sumitani
, and
A.
Endo
,
Opto-Electron. Rev.
21
,
345
(
2013
).
60.
A.
Garscadden
,
M.
Kushner
, and
G.
Eden
,
IEEE Trans. Plasma Sci.
19
,
1013
(
1991
).
61.
W. J.
Witteman
,
The CO2 Laser
(
Springer, Berlin
,
1987
).
62.
J. A.
Macken
,
IEEE J. Quantum Electron.
25
,
1695
(
1989
).
63.
A. A.
Schafgans
et al,
Proc. SPIE
9422
,
94220B
(
2015
).
64.
R.
Schupp
et al,
J. Phys. D: Appl. Phys.
54
,
365103
(
2021
).
65.
L.
Yin
,
H.
Wang
,
B. A.
Reagan
,
C.
Baumgarten
,
Z.
Lyu
,
R.
Soufli
,
E.
Gullikson
,
V. N.
Shlyaptsev
, and
J. J.
Rocca
,
IEEE Photonics J.
13
,
1700115
(
2021
).
66.
Y.
Yan
,
L.
Yin
,
H.
Guo
,
L.
Wang
, and
J.
Zhang
,
IEEE Photonics J.
14
,
8211806
(
2022
).
67.
S.
Harilal
,
B.
O’shay
,
Y.
Tao
, and
M.
Tillack
,
Appl. Phys. B
86
,
547
(
2007
).
68.
D. B.
Abramenko
,
M. V.
Spiridonov
,
P. V.
Krainov
,
V. M.
Krivtsun
,
D. I.
Astakhov
,
V. V.
Medvedev
,
M.
van Kampen
,
D.
Smeets
, and
K. N.
Koshelev
,
Appl. Phys. Lett.
112
,
164102
(
2018
).
69.
M.
van de Kerkhof
,
A. M.
Yakunin
,
V.
Kvon
,
A.
Nikipelov
,
D.
Astakhov
,
P.
Krainov
, and
V.
Banine
,
Radiat. Eff. Defects Solids
177
,
486
(
2022
).
70.
D. T.
Elg
,
G. A.
Panici
,
S.
Liu
,
G.
Girolami
,
S. N.
Srivastava
, and
D. N.
Ruzic
,
Plasma Chem. Plasma Process.
38
,
223
(
2018
).
71.
C.
Onwudinanti
,
G.
Brocks
,
V.
Koelman
,
T.
Morgan
, and
S.
Tao
,
R. Soc. Chem.
9
,
13878
(
2021
).
72.
C.
Onwudinanti
,
I.
Tranca
,
T.
Morgan
, and
S.
Tao
,
Nanomaterials
9
,
129
(
2019
).
73.
D.
Ugur
,
A.
Storm
,
R.
Verberk
,
J.
Brouwer
, and
W.
Sloof
,
Chem. Phys. Lett.
552
,
122
(
2012
).
74.
D.
Qerimi
,
A. C.
Herschberg
,
G.
Panici
,
P.
Hays
,
T.
Pohlman
, and
D. N.
Ruzic
,
J. Appl. Phys.
132
,
113302
(
2022
).
75.
D.
Ugur
,
A. J.
Storm
,
R.
Verberk
,
J. C.
Brouwer
, and
W. G.
Sloof
,
Chem Phys. Lett.
552
,
122
(
2012
).
76.
R.
Garza
,
N.
Bartlett
,
J.
Crouse
,
A.
Herschberg
,
R.
Mohan Sankaran
,
M.
Amzad Hossain
, and
D. N.
Ruzic
,
J. Vac. Sci. Technol. A
41
,
063209
(
2023
).
77.
W.
Ou
,
F.
Brochard
, and
T. W.
Morgan
,
Nucl. Fusion
61
,
066030
(
2021
).
78.
J. R.
Woodworth
,
M. E.
Riley
,
V. A.
Amatucci
,
T. W.
Hamilton
, and
B. P.
Aragon
,
J. Vac. Sci. Technol. A
19
,
45
(
2001
).
79.
M. J.
Titus
,
D.
Nest
, and
D. B.
Graves
,
Appl. Phys. Lett.
94
,
171501
(
2009
).
80.
B.
Jinnai
,
S.
Fukuda
,
H.
Ohtake
, and
S.
Samukawa
,
J. Appl. Phys.
107
,
043302
(
2010
).
81.
J. B.
Boffard
,
C. C.
Lin
,
C.
Culver
,
S.
Wang
,
A. E.
Wendt
,
S.
Radovanov
, and
H.
Persing
,
J. Vac. Sci. Technol. A
32
,
021304
(
2014
).
82.
E. J.
Iglesias
,
F.
Mitschker
,
M.
Fiebrandt
,
N.
Bibinov
, and
P.
Awakowicz
,
Meas. Sci. Technol.
28
,
085501
(
2017
).
83.
P.
Tian
and
M. J.
Kushner
,
Plasma Sources Sci. Technol.
24
,
034017
(
2015
).
84.
L.
Du
,
P.
Ruchhoeft
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. B
40
,
022206
(
2022
).
85.
K.
Choi
and
C.
Han
,
J. Electrochem. Soc.
145
,
L37
(
1998
).
86.
H.
Shin
,
W.
Zhu
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Vac. Sci. Technol. A
30
,
021306
(
2012
).
87.
L.
Du
,
E. W.
Hirsch
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. A
38
,
053003
(
2020
).
88.
L.
Du
,
D. J.
Economou
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. B
40
,
022206
(
2022
).
89.
W.
Zhu
,
S.
Sridhar
,
L.
Liu
,
E.
Hernandez
,
V. M.
Donnelly
, and
D. J.
Economou
,
J. Appl. Phys.
115
,
203303
(
2014
).
90.
M.
Okigawa
,
Y.
Ishikawa
, and
S.
Samukawa
,
J. Vac. Sci. Technol. B
23
,
173
(
2005
).
91.
J.
Lee
and
D. B.
Graves
,
J. Phys. D: Appl. Phys.
44
,
325203
(
2011
).
92.
M.
Fukasawa
et al,
Jpn. J. Appl. Phys.
52
,
05ED01
(
2013
).
93.
K.
Eriguchi
,
Jpn. J. Appl. Phys.
56
,
06HA01
(
2017
).
94.
V.
Ney
and
N.
Schwentner
,
J. Phys.: Conden. Matter
18
,
S1603
(
2006
).
95.
U.
Streller
,
B.
Li
,
A.
Krabbe
,
H. P.
Krause
,
I.
Twesten
, and
N.
Schwentner
,
J. Electron Spectrosc. Relat. Phenom.
80
,
49
(
1996
).
96.
H.
Raaf
and
N.
Schwentner
,
Appl. Surf. Sci.
174
,
13
(
2001
).
97.
D.
Nest
,
D. B.
Graves
,
S.
Engelmann
,
R. L.
Bruce
,
F.
Weilnboeck
,
G. S.
Oehrlein
,
C.
Andes
, and
E. A.
Hudson
,
Appl. Phys. Lett.
92
,
153113
(
2008
).
98.
H.
Okano
,
Y.
Horiike
, and
M.
Sekine
,
Jpn. J. Appl. Phys.
24
,
68
(
1985
).
99.
R.
Kullmer
and
D.
Bäuerle
,
Appl. Phys. A
43
,
227
(
1987
).
100.
R. B.
Jackman
,
H.
Ebert
, and
J. S.
Foord
,
Surf. Sci.
176
,
183
(
1986
).
101.
W.
Sesselmann
,
J. Vac. Sci. Technol. B
7
,
1284
(
1989
).
102.
103.
P.
Mogyorosi
,
K.
Piglmayer
,
R.
Kullmer
, and
D.
Bauerle
,
Appl. Phys. A
45
,
293
(
1988
).
104.
S.
Samukawa
,
B.
Jinnai
,
F.
Oda
, and
Y.
Morimoto
,
Jpn. J. Appl. Phys., Part 2
46
,
L64
(
2007
).
105.
Y.
Ohshita
and
N.
Hosoi
,
Thin Solid Films
262
,
67
(
1995
).
106.
M. R.
Baklanov
,
J. F. D.
Marneffe
,
D.
Shamiryan
,
A. M.
Urbanowicz
,
H.
Shi
,
T. V.
Rakhimova
,
H.
Huang
, and
P. S.
Ho
,
J. Appl. Phys.
113
,
041101
(
2013
).
107.
J. K.
Jang
,
H. W.
Tak
,
Y. J.
Shin
,
D. S.
Kim
, and
G. Y.
Yeom
,
IEEE Trans. Semicond. Manuf.
33
,
302
(
2020
).
108.
See https://www.vanhollen.senate.gov/imo/media/doc/CHIPS%and%Science%Act%of%2022%Summary.pdf for information about “A summary of the CHIPS and SCIENCE Act.”
109.
R. A.
Gottscho
et al, “Innovating at speed and at scale: a next generation infrastructure for accelerating semiconductor technologies,” arXiv:2204.02216 [cs.OH] (2022).
110.
See https://www.semiconductors.org/wp-content/uploads/2018/11/NIST-workforce-RFI-august-2018.pdf for information about “SIA comments to NIST-83 Fed. Reg 32842 (July 2018).”
111.
C.
Murray
,
Semiconductor Technology Panel
(
Stanford University, Stanford, CA
,
2020
).
112.
O.
Nalamasu
and
C.-P.
Chang
, “
Materials to systems in semiconductor manufacturing and beyond
,” in
2021 Symposium on VLSI Technology
,
Kyoto, Japan, 13–19 June 2021 (IEEE, New York
,
2021
), p.
20
.
113.
See https://www.commerce.senate.gov/2022/3/developing-next-generation-technology-for-innovation for information about “Tim Archer-Lam Research Senate Testimony.”
114.
SEMI and ASA
, “Fueling American Innovation & Growth: A National Network for Microelectronics Education and Workforce Development,” SEMI & ASA, 2022.
117.
S.
Baalrud
,
N.
Ferraro
,
L.
Garrison
,
N.
Howard
,
C.
Kuranz
,
J.
Sarff
,
E.
Scime
, and
W.
Solomon
,
A Community Plan for Fusion Energy and Discovery Plasma Sciences
(
American Physical Society, College Park, MD
,
2019–2020
).
118.
Appendix to the CPP Strategic Plan on recommendations B-1 to C-2, 2019–2020.
119.
See https://www.congress.gov/bill/117th-congress/senate-bill/2107 for information about “S.2107-FABS Act.”
120.
See https://www.americanimmigrationcouncil.org/research/foreign-born-stem-workers-united-states for information about “Foreign born STEM workers United States.”
You do not currently have access to this content.