In the treatment of neurodegenerative disorders, a potential cure at a single neuron cell resolution is still lacking. Micromagnetic neurostimulation, although in its infancy, is one of the most promising techniques that offer spatially selective activation of neurons through micrometer-sized coils or microcoils (μcoils). Time-varying current drives these μcoils and generates a time-varying magnetic field which in turn induces an electric field to activate the neural tissues. In this work, we report the design and fabrication of planar μcoil arrays, termed Magnetic Patch (MagPatch), for activating single neurons. Using numerical calculations on ANSYS-Maxwell and NEURON, we report an optimized MagPatch array design that exploits the directionality of the induced electric field from the μcoils to enhance spatial selectivity. Each μcoil has an outer dimension of 190 × 190 μm2 and one MagPatch array contains 8 μcoils. For proof-of-concept design and development, the MagPatch array has been fabricated on Si-substrates using Ti, Au, and Si3N4 to ensure preliminary biocompatibility. They were then encapsulated in Parylene-C, a waterproof, anti-leakage current coating, thereby ensuring basic surface biocompatibility. Human neuroblastoma cells were cultured directly on the surface encapsulated MagPatch, and calcium fluorescence imaging was used to assess cell functionality. The impact of scaling the dimensions of the μcoil in the MagPatch array on electrical characteristics, Q-factor, and thermal effects on neural tissues from these μcoils have also been discussed.

1.
G.
Bonmassar
,
S. W.
Lee
,
D. K.
Freeman
,
M.
Polasek
,
S. I.
Fried
, and
J. T.
Gale
,
Nat. Commun.
3
,
921
(
2012
).
2.
R.
Saha
et al,
J. Neural Eng.
19
,
016018
(
2022
).
3.
R.
Saha
et al,
J. Neural Eng.
20
,
036022
(
2023
).
4.
S. W.
Lee
,
F.
Fallegger
,
B. D.
Casse
, and
S. I.
Fried
,
Sci. Adv.
2
,
e1600889
(
2016
).
5.
S.
Minusa
,
H.
Osanai
, and
T.
Tateno
,
IEEE Trans. Biomed. Eng.
65
,
1301
(
2018
).
6.
S.
Minusa
,
S.
Muramatsu
,
H.
Osanai
, and
T.
Tateno
,
J. Neural Eng.
16
,
066014
(
2019
).
8.
J.
Skach
,
C.
Conway
,
L.
Barrett
, and
H.
Ye
,
Sci. Rep.
10
,
1
(
2020
).
9.
R.
Saha
,
K.
Wu
, and
J.-P.
Wang
,
2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)
,
Baltimore, MD
, 24–27 April 2023 (IEEE, New York,
2023
), pp.
1
4
.
10.
M.-E.
Rizou
and
T.
Prodromakis
,
Biomed. Phys. Eng. Express
4
,
025016
(
2018
).
11.
H.
Jeong
,
J.
Deng
, and
G.
Bonmassar
,
J. Vac. Sci. Technol. B
39
,
063202
(
2021
).
12.
13.
S. W.
Lee
and
S. I.
Fried
,
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
, 26–30 August 2014 (IEEE, New York,
2014
), pp.
6125
6128
.
14.
S. W.
Lee
and
S. I.
Fried
,
2015 7th International IEEE/EMBS Conference on Neural Engineering (NER)
,
Montpellier, France
, 22–24 April 2015 (IEEE, New York,
2015
), pp.
268
271
.
15.
M.
Alzahrani
and
B. J.
Roth
,
IEEE Trans. Biomed. Eng.
70
,
3260
(
2023
).
16.
B.
Cao
,
Y.
Zheng
,
T.
Xi
,
C.
Zhang
,
W.
Song
,
K.
Burugapalli
,
H.
Yang
, and
Y.
Ma
,
Biomed. Microdevices
14
,
709
(
2012
).
17.
E. T.
Demann
,
P. S.
Stein
, and
J. E.
Haubenreich
,
J. Long Term Eff. Med. Implants
15
,
687
(
2005
).
18.
T. J.
Webster
,
A. A.
Patel
,
M.
Rahaman
, and
B. S.
Bal
,
Acta Biomater.
8
,
4447
(
2012
).
20.
E.
McGlynn
,
V.
Nabaei
,
E.
Ren
,
G.
Galeote-Checa
,
R.
Das
,
G.
Curia
, and
H.
Heidari
,
Adv. Sci.
8
,
2002693
(
2021
).
21.
M. L.
Hines
and
N. T.
Carnevale
,
Neural Comput.
9
,
1179
(
1997
).
22.
K. R.
Williams
,
K.
Gupta
, and
M.
Wasilik
,
J. Microelectromech. Syst.
12
,
761
(
2003
).
23.
C.
Hassler
,
R. P.
von Metzen
,
P.
Ruther
, and
T.
Stieglitz
,
J. Biomed. Mater. Res. B
93
,
266
(
2010
).
24.
S.
van den Driesche
,
C.
Habben
,
A.
Bödecker
,
W.
Lang
, and
M. J.
Vellekoop
,
Proceedings
1
,
299
(
2017
).
25.
L.
Golestanirad
,
J. T.
Gale
,
N. F.
Manzoor
,
H.-J.
Park
,
L.
Glait
,
F.
Haer
,
J. A.
Kaltenbach
, and
G.
Bonmassar
,
Front. Physiol.
9
, 373586 (
2018
).
26.
A. S.
Martyanov
and
N. I.
Neustroyev
,
Eastern Eur. Sci. J.
5
(
2014
), http://journale.auris-verlag.de/index.php/EESJ/article/view/231.
27.
Z.
Ren
,
IEEE Trans. Magn.
38
,
557
(
2002
).
28.
T.
Pashut
,
S.
Wolfus
,
A.
Friedman
,
M.
Lavidor
,
I.
Bar-Gad
,
Y.
Yeshurun
, and
A.
Korngreen
,
PLoS Comput. Biol.
7
,
e1002022
(
2011
).
29.
N. T.
Carnevale
and
M. L.
Hines
,
The NEURON Book
(
Cambridge University
,
London
,
2006
).
30.
E.
Özdemir
and
M.
Çoramık
,
J. Balt. Sci. Ed.
17
, 320 (
2018
).
31.
I.
Galili
,
D.
Kaplan
, and
Y.
Lehavi
,
Am. J. Phys.
74
,
337
(
2006
).
32.
C. R.
Neagu
,
H. V.
Jansen
,
A.
Smith
,
J. G. E.
Gardeniers
, and
M. C.
Elwenspoek
,
Sens. Actuators A
62
,
599
(
1997
).
33.
T.
Kim
,
H.
Kadji
,
A. J.
Whalen
,
A.
Ashourvan
,
E.
Freeman
,
S. I.
Fried
,
S.
Tadigadapa
, and
S. J.
Schiff
,
J Neural Eng.
19
,
056029
(
2022
).
34.
I.
Parnas
,
S.
Hochstein
, and
H.
Parnas
,
J. Neurophysiol.
39
,
909
(
1976
).
35.
R.
Wang
,
C.
Jin
,
A.
McEwan
, and
A.
van Schaik
,
2011 IEE International Symposium of Circuits and Systems (ISCAS)
,
Rio de Janeiro, Brazil
, 15–18 May 2011 (IEEE, New York,
2011
), pp.
869
872
.
36.
C. M.
Zierhofer
,
IEEE Trans. Biomed. Eng.
48
,
173
(
2001
).
37.
R. F.
Wallin
and
E.
Arscott
,
Med. Device Diagn. Ind.
20
,
96
(
1998
).
38.
See the supplementary material (S1–S5) online for the fabrication flowchart for the MagPatch arrays, packaging and electrical interface for MagPatch along with scanning electron microscope (SEM) images of the microcoil arrays, the design of microcoil array for neurostimulation, the electrical circuit equivalent of the microcoil in the MagPatch array, and scaling effects on the Q factor of the microcoil, heat energy released, and change of temperature in the tissue.

Supplementary Material

You do not currently have access to this content.