Nanocone arrays are widely employed for applications such as antireflection structures and field emission devices. Silicon nanocones are typically obtained by an etching process, but the profile is hard to attain because anisotropic dry etching generally gives vertical or only slightly tapered sidewall profiles, and isotropic dry plasma etching gives curved sidewalls. In this work, we report the fabrication of cone structures by using masked etching followed by maskless etching techniques. The silicon structure is first etched using fluorine-based plasma under the protection of a hard metal mask, with a tapered or vertical sidewall profile. The mask is then removed, and maskless etching with an optimized nonswitching pseudo-Bosch recipe is applied to achieve the cone structure with a sharp apex. The gas flow ratio of C4F8 and SF6 is significantly increased from 38:22 (which creates a vertical profile) to 56:4, creating a taper angle of approximately 80°. After subsequent maskless etching, the sidewall taper angle is decreased to 74°, and the structure is sharpened to give a pointed apex. The effect of an oxygen cleaning step is also studied. With the introduction of periodic oxygen plasma cleaning steps, both the etch rate and surface smoothness are greatly improved. Lastly, it was found that the aspect ratio-dependent etching effect becomes prominent for dense patterns of cone arrays, with a greatly reduced etch depth at a 600 nm pitch array compared to a 1200 nm pitch array.

1.
S.
Jeong
,
E. C.
Garnett
,
S.
Wang
,
Z.
Yu
,
S.
Fan
,
M. L.
Brongersma
,
M. D.
McGehee
, and
Y.
Cui
,
Nano Lett.
12
,
2971
(
2012
).
2.
S.
Jeong
,
M. D.
McGehee
, and
Y.
Cui
,
Nat. Commun.
4
,
2950
(
2013
).
3.
S.
Thiyagu
,
Z.
Pei
, and
M.-S.
Jhong
,
Nanoscale Res. Lett.
7
,
172
(
2012
).
5.
Z.
Xu
,
Y.
Yao
,
E. P.
Brueckner
,
L.
Li
,
J.
Jiang
,
R. G.
Nuzzo
, and
G. L.
Liu
,
Nanotechnology
25
,
305301
(
2014
).
6.
A.
Folch
,
M. S.
Wrighton
, and
M. A.
Schmidt
,
J. Microelectromech. Syst.
6
,
303
(
1997
).
7.
K.
Sun
,
W.
Zhang
,
B.
Li
,
J. Y.
Lee
,
Y.-H.
Xie
,
T.
Schroeder
,
J.
Katzer
,
X.
Wei
, and
T. P.
Russell
,
IEEE Trans. Nanotechnol.
11
,
999
(
2012
).
8.
D.
Lee
,
J.
Bae
,
S.
Hong
,
H.
Yang
, and
Y.-B.
Kim
,
Nanotechnology
27
,
215302
(
2016
).
9.
Q.
Li
,
J.
Gao
,
Z.
Li
,
H.
Yang
,
H.
Liu
,
X.
Wang
, and
Y.
Li
,
Opt. Mater.
70
,
165
(
2017
).
10.
M. A. R.
Alves
,
D. F.
Takeuti
, and
E. S.
Braga
,
Microelectron. J.
36
,
51
(
2005
).
11.
V.
Kondrashov
and
J.
Rühe
,
Langmuir
30
,
4342
(
2014
).
12.
F.
Aydinoglu
,
A.
Pan
,
C.
Zhu
, and
B.
Cui
,
J. Vac. Sci. Technol. B
38
,
12804
(
2020
).
13.
H. V.
Jansen
,
M. J.
de Boer
,
S.
Unnikrishnan
,
M. C.
Louwerse
, and
M. C.
Elwenspoek
,
J. Micromech. Microeng.
19
,
033001
(
2009
).
14.
M. D.
Henry
,
S.
Walavalkar
,
A.
Homyk
, and
A.
Scherer
,
Nanotechnology
20
,
255305
(
2009
).
15.
N.
Roxhed
,
P.
Griss
, and
G.
Stemme
, in
TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference
(
IEEE
,
New York
,
2007
).
16.
Z.
Liu
,
Y.
Wu
,
B.
Harteneck
, and
D.
Olynick
,
Nanotechnology
24
,
015305
(
2012
).
17.
F.
Laermer
,
S.
Franssila
,
L.
Sainiemi
, and
K.
Kolari
, in
Handbook of Silicon Based MEMS Materials and Technologies
, 3rd ed., edited by
M.
Tilli
,
M.
Paulasto-Krockel
,
M.
Petzold
,
H.
Theuss
,
T.
Motooka
, and
V.
Lindroos
(
Elsevier
,
New York
,
2020)
, p.
417
.
18.
M.
Gharghi
and
S.
Sivoththaman
,
J. Vac. Sci. Technol. A
24
,
723
(
2006
).
19.
R. K.
Dey
,
H.
Ekinci
, and
B.
Cui
,
J. Vac. Sci. Technol. B
38
,
12207
(
2020
).
20.
M.
Samaan
,
H.
Ekinci
,
R.
Dey
,
X.
Zhu
,
D.
Pushin
, and
B.
Cui
,
Microelectron. Eng.
267
,
111909
(
2023
).
21.
C.
Con
,
J.
Zhang
, and
B.
Cui
,
Nanotechnology
25
,
175301
(
2014
).
22.
A.
Ayari-Kanoun
,
F.
Aydinoglu
,
B.
Cui
, and
F.
Saffih
,
J. Vac. Sci. Technol. B
34
,
06KD01
(
2016
).
23.
F.
Saffih
,
C.
Con
,
A.
Alshammari
,
M.
Yavuz
, and
B.
Cui
,
J. Vac. Sci. Technol. B
32
,
06FI04
(
2014
).
24.
F.
Jiang
,
A.
Keating
,
M.
Martyniuk
,
K.
Prasad
,
L.
Faraone
, and
J.
Dell
,
J. Micromech. Microeng.
22
,
095005
(
2012
).
25.
Z.
Ouyang
,
D. N.
Ruzic
,
M.
Kiehlbauch
,
A.
Schrinsky
, and
K.
Torek
,
J. Vac. Sci. Technol. A
32
,
41306
(
2014
).
26.
A.
Pan
,
M.
Samaan
,
Z.
Yan
,
W.
Hu
, and
B.
Cui
,
J. Vac. Sci. Technol. B
41
,
023001
(
2023
).
27.
H.
Ekinci
,
N. M.
Jahed
,
M.
Soltani
, and
B.
Cui
,
IEEE Trans. Nanotechnol.
20
,
33
(
2020
).
28.
H.
Ekinci
,
M.
Soltani
,
N. M.
Jahed
,
X.
Zhu
,
B.
Cui
, and
D.
Pushin
,
J. Alloys Compd.
875
,
160087
(
2021
).
29.
C. K.
Chung
,
H. C.
Lu
, and
T. H.
Jaw
,
Microsyst. Technol.
6
,
106
(
2000
).
You do not currently have access to this content.