The influence of argon working pressure during magnetron sputtering on thermoelectric properties has been investigated on p-type Bi0.5Sb1.5Te3 flexible films deposited at various working pressures in the range from 2 to 5 Pa. The microstructure and orientations, atomic compositions, and carrier concentration could be regulated by adjusting the working pressure, due to the size-dependent inhibition of the deposition of the sputtered Bi, Sb, and Te atoms from argon ions. Profiting from the occurrence of the (006) orientation, the nearest stoichiometric ratio, the highest carrier concentration and mobility, and the quantum confinement effect, the film deposited at 4 Pa displays the maximum power factor of 1095 μW m−1 K−2 at 360 K. These results suggest that the electrical transport properties of the sputtered flexible thermoelectric thin films can be synergistically optimized by selecting an appropriate working pressure.

2.
C.
Gayner
and
K. K.
Kar
,
Prog. Mater. Sci.
83
,
330
(
2016
).
3.
Q.
He
,
W.
Zhu
,
Y.
Du
,
P.
Wei
,
X.
Nie
,
W.
Zhao
, and
Q.
Zhang
,
J. Power Sources
603
,
234403
(
2024
).
4.
L. C.
Yin
.,
Adv. Funct. Mater.
33
,
2301750
(
2023
).
5.
D. Z.
Wang
.,
J. Am. Chem. Soc.
146
,
1681
(
2024
).
6.
H.
Yu
,
Z.
Hu
,
J.
He
,
Y.
Ran
,
Y.
Zhao
,
Z.
Yu
, and
K.
Tai
,
Nat. Commun.
15
,
2521
(
2024
).
7.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
X.
Sun
,
Z.
Zhang
,
S. B.
Cronin
, and
T.
Koga
,
Phys. Solid State
41
,
679
(
1999
).
9.
X.
Mu
,
H.
Zhou
,
D.
He
,
W.
Zhao
,
P.
Wei
,
W.
Zhu
,
X.
Nie
,
H.
Liu
, and
Q.
Zhang
,
Nano Energy
33
,
55
(
2017
).
10.
G.
Qiu
,
J.
Li
,
Y.
Ling
,
G.
Dong
,
J.
Feng
,
P.
Zhang
, and
R.
Liu
,
J. Alloys Compd.
950
,
169916
(
2023
).
11.
F.
Ma
,
D.
Ao
,
X.
Liu
, and
W. D.
Liu
,
Ceram. Int.
49
,
18584
(
2023
).
12.
B. G.
Kim
,
S. H.
Bae
,
J.
Byeon
,
C.
Lee
, and
S. M.
Choi
,
Mater. Lett.
270
,
127697
(
2020
).
13.
T.
Kurokawa
,
R.
Mori
,
O.
Norimasa
,
T.
Chiba
,
R.
Eguchi
, and
M.
Takashiri
,
Vacuum
179
,
109535
(
2020
).
14.
J.
Zhang
,
H.
Xu
,
Z.
Zheng
,
C.
Wang
,
X.
Li
,
F.
Li
,
P.
Fan
, and
Y. X.
Chen
,
Nanomaterials
13
,
257
(
2023
).
15.
W.
Zhu
,
Y.
Deng
,
Y.
Wang
,
B.
Luo
, and
L.
Cao
,
Thin Solid Films
556
,
270
(
2014
).
16.
J. M.
Lin
,
Y. C.
Chen
,
C. P.
Lin
,
H. C.
Chien
,
C. Y.
Wen
,
J. Y.
Chang
, and
Z. Y.
Zhan
,
Microelectron. Eng.
148
,
51
(
2015
).
17.
Z. H.
Zheng
,
D.
Yang
,
P. C.
Zhang
,
F.
Li
,
Y. X.
Chen
,
G. X.
Liang
, and
P.
Fan
,
Mater. Lett.
275
,
128143
(
2020
).
18.
O.
Norimasa
,
T.
Kurokawa
,
R.
Eguchi
, and
M.
Takashiri
,
Coatings
11
,
38
(
2021
).
19.
B. G.
Kim
,
K. H.
Seo
,
C. H.
Lim
, and
S. M.
Choi
,
J. Mater. Res. Technol.
15
,
606
(
2021
).
20.
S.
Liang
,
Y.
Shi
,
D.
Hu
,
H.
Zhu
, and
S.
Yue
,
Ceram. Int.
49
,
35309
(
2023
).
21.
L.
Cao
,
H.
Gao
, and
M.
Miao
,
CrystEngComm
22
,
7790
(
2020
).
22.
X.
Tao
,
B. W.
Stuart
,
K.
Wang
,
J. W.
Murray
,
E.
Bilotti
, and
H. E.
Assender
,
ACS Appl. Mater. Interfaces
13
,
10149
(
2021
).
23.
M.
Naumochkin
,
G. H.
Park
,
K.
Nielsch
, and
H.
Reith
,
Phys. Status Solidi
16
,
2100533
(
2022
).
24.
K.
Singkaselit
,
A.
Sakulkalavek
, and
R.
Sakdanuphab
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
8
,
035002
(
2017
).
25.
D.
Kong
,
W.
Zhu
,
Z.
Guo
, and
Y.
Deng
,
Energy
175
,
292
(
2019
).
26.
P.
Jitthamapirom
,
P.
Wanarattikan
,
P.
Nuthongkum
,
R.
Sakdanuphab
, and
A.
Sakulkalavek
,
Ferroelectrics
552
,
64
(
2019
).
27.
S.
Kianwimol
,
R.
Sakdanuphab
,
N.
Chanlek
,
A.
Harnwunggmoung
, and
A.
Sakulkalavek
,
Surf. Coat. Technol.
393
,
125808
(
2020
).
28.
N.
Somdock
,
S.
Kianwimol
,
A.
Harnwunggmoung
,
A.
Sakulkalavek
, and
R.
Sakdanuphab
,
J. Alloys Compd.
773
,
78
(
2019
).
29.
A.
Khorsand Zak
,
W. H.
Abd. Majid
,
M. E.
Abrishami
, and
R.
Yousefi
,
Solid State Sci.
13
,
251
(
2011
).
30.
N. K.
Gupta
.,
Thin Solid Films
756
,
139355
(
2022
).
32.
L.
Pandey
.,
J. Phys.: Condens. Matter
35
,
355702
(
2023
).
33.
P.
Fan
,
R.
Li
,
Y. X.
Chen
,
Z.
Zheng
,
F.
Li
,
G.
Liang
, and
J.
Luo
,
J. Eur. Ceram. Soc.
40
,
4016
(
2020
).
35.
Y. X.
Chen
,
K. D.
Shi
,
F.
Li
,
X.
Xu
,
Z. H.
Ge
, and
J.
He
,
J. Am. Ceram. Soc.
102
,
5989
(
2019
).
36.
K.
Kim
,
G.
Kim
,
S. I.
Kim
,
K. H.
Lee
, and
W.
Lee
,
J. Alloys Compd.
772
,
593
(
2019
).
37.
M.
Tan
,
Y.
Deng
, and
Y.
Hao
,
Phys. Status Solidi
210
,
2611
(
2013
).
38.
B.
Du
,
J.
Wu
,
X.
Lai
,
Y.
Deng
,
S.
Wang
,
H.
Liu
,
J.
Liu
, and
J.
Jian
,
Ceram. Int.
45
,
3244
(
2019
).
39.
40.
M.
Tan
,
X. L.
Shi
,
W. D.
Liu
,
M.
Li
,
Y.
Wang
,
H.
Li
,
Y.
Deng
, and
Z. G.
Chen
,
Adv. Energy Mater.
11
,
2102578
(
2021
).
41.
M.
Lan
,
S.
Sun
,
S.
Liu
,
G.
Li
,
Z.
Wang
, and
Q.
Wang
,
J. Eur. Ceram. Soc.
43
,
7493
(
2023
).
42.
Q.
Zou
.,
Appl. Phys. Lett.
120
,
023903
(
2022
).
43.
See the supplementary material online for the schematic diagram of the thermoelectric measurement apparatus, the image of a flexible Bi0.5Sb1.5Te3 film, and the XRD patterns of all prepared films.

Supplementary Material

You do not currently have access to this content.