High-power electronics, such as GaN high electron mobility transistors (HEMTs), are expected to perform reliably in high-temperature conditions. This study aims to gain an understanding of the microscopic origin of both material and device vulnerabilities to high temperatures by real-time monitoring of the onset of structural degradation under varying temperature conditions. This is achieved by operating GaN HEMT devices in situ inside a transmission electron microscope (TEM). Electron-transparent specimens are prepared from a bulk device and heated up to 800 °C. High-resolution TEM (HRTEM), scanning TEM (STEM), energy-dispersive x-ray spectroscopy (EDS), and geometric phase analysis (GPA) are performed to evaluate crystal quality, material diffusion, and strain propagation in the sample before and after heating. Gate contact area reduction is visible from 470 °C accompanied by Ni/Au intermixing near the gate/AlGaN interface. Elevated temperatures induce significant out-of-plane lattice expansion at the SiNx/GaN/AlGaN interface, as revealed by geometry-phase GPA strain maps, while in-plane strains remain relatively consistent. Exposure to temperatures exceeding 500 °C leads to almost two orders of magnitude increase in leakage current in bulk devices in this study, which complements the results from our TEM experiment. The findings of this study offer real-time visual insights into identifying the initial location of degradation and highlight the impact of temperature on the bulk device’s structure, electrical properties, and material degradation.

1.
M.
Meneghini
et al,
J. Appl. Phys.
130
, 181101 (
2021
).
2.
K. J.
Chen
,
O.
Häberlen
,
A.
Lidow
,
C.
lin Tsai
,
T.
Ueda
,
Y.
Uemoto
, and
Y.
Wu
,
IEEE Trans. Electron Devices
.
64
,
779
(
2017
).
3.
H.
Fu
,
K.
Fu
,
S.
Chowdhury
,
T.
Palacios
, and
Y.
Zhao
,
IEEE Trans. Electron Devices
.
68
,
3200
(
2021
).
4.
H.
Amano
et al,
J. Phys. D: Appl. Phys.
51
,
163001
(
2018
).
5.
F.
Roccaforte
,
G.
Greco
,
P.
Fiorenza
, and
F.
Iucolano
,
Materials
.
12
,
1599
(
2019
).
6.
J.
Ballestín-Fuertes
,
J.
Muñoz-Cruzado-Alba
,
J. F.
Sanz-Osorio
, and
E.
Laporta-Puyal
,
Electronics
10
,
677
(
2021
).
7.
J.
Wei
,
G.
Tang
,
R.
Xie
, and
K. J.
Chen
,
Jpn. J. Appl. Phys.
59
,
SG0801
(
2020
).
8.
J. R.
Kumar
,
H. V.
Du John
,
I.
BinolaKJebalin
,
J.
Ajayan
, and
D.
Nirmal
,
Microelectron. J.
140
,
105951
(
2023
).
9.
N.
Keshmiri
,
D.
Wang
,
B.
Agrawal
,
R.
Hou
, and
A.
Emadi
,
IEEE Access
.
8
,
70553
(
2020
).
10.
B.
Romanczyk
,
W.
Li
,
M.
Guidry
,
N.
Hatui
,
A.
Krishna
,
C.
Wurm
,
S.
Keller
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
41
,
1633
(
2020
).
11.
S.
Kargarrazi
,
A. S.
Yalamarthy
,
P. F.
Satterthwaite
,
S. W.
Blankenberg
,
C.
Chapin
, and
D. G.
Senesky
,
IEEE J. Electron Devices Soc.
7
,
931
(
2019
).
12.
Y.
Ando
,
H.
Takahashi
,
Q.
Ma
,
A.
Wakejima
, and
J.
Suda
,
IEEE Trans. Electron Devices
67
,
5421
(
2020
).
13.
E.
Zanoni
et al,
Phys. Status Solidi A
219
,
2100722
(
2022
).
14.
A. I.
Emon
,
A. B.
Mirza
,
J.
Kaplun
,
S. S.
Vala
, and
F.
Luo
,
IEEE J. Emerg. Sel. Top. Power Electron.
11
,
2702
2729
(
2022
).
15.
P. G.
Neudeck
,
R. S.
Okojie
, and
L.-Y.
Chen
,
Proc. IEEE
90
,
1065
(
2002
).
16.
L.
Yang
et al,
Appl. Phys. Lett.
120
, 091103 (
2022
).
17.
S.
Shin
,
H.
Lee
, and
H.
So
,
IEEE Access
9
,
54184
(
2021
).
18.
K.
Baek
,
S.
Shin
, and
H.
So
,
Eng. Appl. Artif. Intell.
123
,
106309
(
2023
).
19.
J.
Kuzmik
,
R.
Javorka
,
A.
Alam
,
M.
Marso
,
M.
Heuken
, and
P.
Kordos
,
IEEE Trans. Electron Devices
49
,
1496
(
2002
).
20.
N.
Maeda
,
T.
Saitoh
,
K.
Tsubaki
,
T.
Nishida
, and
N.
Kobayashi
,
Jpn. J. Appl. Phys.
38
,
L987
(
1999
).
21.
R.
Gaska
,
Q.
Chen
,
J.
Yang
,
A.
Osinsky
,
M. A.
Khan
, and
M. S.
Shur
,
IEEE Electron Device Lett.
18
,
492
(
1997
).
22.
O.
Aktas
,
Z.
Fan
,
S.
Mohammad
,
A.
Botchkarev
, and
H.
Morkoc
,
Appl. Phys. Lett.
69
,
3872
(
1996
).
23.
S.
Arulkumaran
,
T.
Egawa
,
H.
Ishikawa
, and
T.
Jimbo
,
Appl. Phys. Lett.
80
,
2186
(
2002
).
24.
W.
Tan
,
M.
Uren
,
P.
Fry
,
P.
Houston
,
R.
Balmer
, and
T.
Martin
,
Solid-State Electron.
50
,
511
(
2006
).
25.
F.
Medjdoub
,
J.-F.
Carlin
,
M.
Gonschorek
,
E.
Feltin
,
M.
Py
,
D.
Ducatteau
,
C.
Gaquière
,
N.
Grandjean
, and
E.
Kohn
,
2006 International Electron Devices Meeting
, San Francisco Hilton and Towers, December 11–13, 2006 (
IEEE
,
Piscataway, NJ
,
2006
), p.
1
.
26.
I.
Daumiller
,
C.
Kirchner
,
M.
Kamp
,
K. J.
Ebeling
, and
E.
Kohn
,
IEEE Electron Device Lett.
20
,
448
(
1999
).
27.
D.
Maier
,
M.
Alomari
,
N.
Grandjean
,
J.-F.
Carlin
,
M.-A.
Diforte-Poisson
,
C.
Dua
,
S.
Delage
, and
E.
Kohn
,
IEEE Electron Device Lett.
33
,
985
(
2012
).
28.
A. E.
Islam
et al,
NAECON 2023-IEEE National Aerospace and Electronics Conference
, (
IEEE
,
Piscataway, NJ
,
2023
), p.
263
.
29.
M.
Yuan
,
Q.
Xie
,
J.
Niroula
,
M. F.
Isamotu
,
N. S.
Rajput
,
N.
Chowdhury
, and
T.
Palacios
,
2022 IEEE 9th Workshop on Wide Bandgap Power Devices & Applications (WiPDA)
(
IEEE
,
Piscataway, NJ
,
2022
), p.
40
.
30.
U.
Chowdhury
et al,
IEEE Electron Device Lett
29
,
1098
(
2008
).
31.
S.
Park
,
C.
Floresca
,
U.
Chowdhury
,
J. L.
Jimenez
,
C.
Lee
,
E.
Beam
,
P.
Saunier
,
T.
Balistreri
, and
M. J.
Kim
,
Microelectron. Reliab.
49
,
478
(
2009
).
32.
A. E.
Islam
,
N. P.
Sepelak
,
A. T.
Miesle
,
H.
Lee
,
M.
Snure
,
S.
Nikodemski
, D. E. Walker, N. C. Miller, M. Grupen, K. D. Leedy, K. J. Liddy, A. Crespo, G. R. Hughes, W. Zhu, B. Poling, S. Tetlak, K. D. Chabak and
A. J.
Green
, “
Effect of high temperature on the performance of AlGaN/GaN T-gate high-electron mobility transistors with ∼140-nm gate length
,”
IEEE Trans. Electron Devices
71
(
3
),
1805
1811
(
2024
).
33.
D.
Maier
et al,
IEEE Trans. Device Mater. Reliab.
10
,
427
(
2010
).
34.
Y.
Chen
,
X.
Liao
,
C.
Zeng
,
C.
Peng
,
Y.
Liu
,
R.
Li
,
Y.
En
, and
Y.
Huang
,
Semicond. Sci. Technol.
33
,
015019
(
2018
).
35.
H.
Jung
,
R.
Behtash
,
J. R.
Thorpe
,
K.
Riepe
,
F.
Bourgeois
,
H.
Blanck
,
A.
Chuvilin
, and
U.
Kaiser
,
Phys. Status Solidi C
6
,
S976
(
2009
).
36.
J.
Lee
,
D.
Liu
,
H.
Kim
, and
W.
Lu
,
Solid-State Electron.
48
,
1855
(
2004
).
37.
J. P.
Jones
,
M. R.
Rosenberger
,
W. P.
King
,
R.
Vetury
,
E.
Heller
,
D.
Dorsey
, and
S.
Graham
,
Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
Piscataway, NJ
,
2014
), p.
959
.
38.
M. A. J.
Rasel
,
R.
Schoell
,
N. S.
Al-Mamun
,
K.
Hattar
,
C. T.
Harris
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S. J.
Pearton
,
J. Phys. D: Appl. Phys.
56
,
305104
(
2023
).
39.
B.
Wang
,
Z.
Islam
,
A.
Haque
,
K.
Chabak
,
M.
Snure
,
E.
Heller
, and
N.
Glavin
,
Nanotechnology.
29
,
31LT01
(
2018
).
40.
Z.
Islam
,
M.
Xian
,
A.
Haque
,
F.
Ren
,
M.
Tadjer
,
N.
Glavin
, and
S.
Pearton
,
IEEE Trans. Electron Devices
67
,
3056
(
2020
).
41.
Z.
Islam
,
A.
Haque
, and
N.
Glavin
,
Appl. Phys. Lett.
113
, 183102 (
2018
).
42.
L. A.
Giannuzzi
,
B.
Kempshall
,
S.
Schwarz
,
J.
Lomness
,
B.
Prenitzer
, and
F.
Stevie
,
Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice
(
Springer
,
New York, NY
,
2005
), p.
201
.
43.
Y.
Koyama
,
T.
Hashizume
, and
H.
Hasegawa
,
Solid-State Electron.
43
,
1483
(
1999
).
44.
M.
Hÿtch
,
E.
Snoeck
, and
R.
Kilaas
,
Ultramicroscopy
74
,
131
(
1998
).
45.
F.
Hüe
,
M.
Hÿtch
,
H.
Bender
,
F.
Houdellier
, and
A.
Claverie
,
Phys. Rev. Lett.
100
,
156602
(
2008
).
46.
W.
Gian
,
M.
Skowronski
, and
G. S.
Rohrer
,
MRS Online Proc. Libr.
423
,
475
(
1996
).
47.
M.
Hou
,
S. R.
Jain
,
H.
So
,
T. A.
Heuser
,
X.
Xu
,
A. J.
Suria
, and
D. G.
Senesky
,
J. Appl. Phys.
122
, 195102 (
2017
).
48.
H.
Omiya
,
F.
Ponce
,
H.
Marui
,
S.
Tanaka
, and
T.
Mukai
,
Appl. Phys. Lett.
85
,
6143
(
2004
).
49.
Y.
Zhou
et al,
Appl. Phys. Lett.
111
, 041901 (
2017
).
50.
See supplementary material online for discussion on degradation of GaN HEMT due to temperature increase from room temperature to 900°C, incorporating additional information on metal diffusion, layer disappearance, and GPA analysis.

Supplementary Material

You do not currently have access to this content.