As feature sizes continue to shrink for more advanced nodes, local critical dimension (CD) uniformity (LCDU) control becomes more critical than ever for improving defectivity, edge placement error, and yield enhancement. In this work, we developed a new approach utilizing an Ar plasma treatment with a direct current superposition function at low-temperature post patterning stack open. Our results demonstrated that this approach was capable of breaking the trade-off between CD shrink, LCDU improvement, and defectivity reduction. We significantly reduced the LCDU from 1.64 to 1.26 nm at the same CD level (∼10 nm). In contrast, no LCDU reduction was observed with the traditional CD shrink approach through trilayer process tuning. The mechanism for the LCDU improvement was investigated, and a hypothesis was proposed. We believe both the defect mitigation of the organic planarization layer profile and the vertical loading effect together with top sealing and in situ planarization contributed to the final LCDU improvement.

1.
J.
Thackeray
,
J. Micro/Nanolithogr. MEMS MOEMS
10
,
033009
(
2011
).
2.
P.
De Bisschop
,
J. Micro/Nanolithogr. MEMS MOEMS
17
,
041011
(
2018
).
3.
J.
Biafore
,
M.
Smith
,
C.
Mack
,
J.
Thackeray
,
R.
Gronheid
,
S.
Robertson
,
T.
Graves
, and
D.
Blankenship
,
Proc. SPIE
7273
,
727343
(
2009
).
4.
E.
Miller
,
J.
Sun
,
J.
Church
, X. 101460A (2017). Sun, and A. Raley,
Proc. SPIE
11615
,
116150A
(
2021
).
5.
J.
Jiang
,
D.
Simone
, and
G.
Vandenberghe
,
Proc. SPIE
10146
,
101460A
(
2017
).
6.
S.
Kim
,
S.
Koo
,
J.
Park
,
C.
Lim
,
M.
Kim
,
C.
Ahn
,
A.
Fumar-Pici
, and
A.
Chen
,
Proc. SPIE
9048
,
90480A
(
2014
).
7.
L.
Van Look
,
J.
Bekaert
,
A.
Frommhold
,
E.
Hendrickx
,
G.
Rispens
, and
G.
Schiffelers
,
Proc. SPIE
10809
,
108090M
(
2018
).
8.
G.
Lorusso
,
M.
Mao
,
L.
Reijnen
,
K.
Viatkina
,
R.
Knops
,
G.
Rispens
, and
T.
Fliervoet
,
Proc. SPIE
9425
,
94250K
(
2015
).
9.
J.
Franke
,
L.
Van Look
,
A.
Frommhold
,
A.
Colina
,
G.
Rispens
,
D.
Rio
,
E.
Setten
, and
M.
Maslow
,
Proc. SPIE
12915
,
1291508
(
2023
).
10.
A.
Liang
et al,
Proc. SPIE
10143
,
1014319
(
2017
).
11.
H.
Yaegashi
et al,
Proc. SPIE
10586
,
1058605
(
2018
).
12.
M.
Schaepkens
,
R. C. M.
Bosch
,
T. E. F. M.
Standaert
,
G. S.
Oehrlein
, and
J. M.
Cook
,
J. Vac. Sci. Technol. A
16
,
2099
(
1998
).
13.
A.
Koshiishi
et al, U.S. patent 7,740,737 (22 June 2010).
14.
W. T.
Lai
,
C. J.
Hwang
,
A. T.
Wang
,
J. C.
Yau
,
J. H.
Liao
,
L. H.
Chen
,
K.
Adachi
, and
S.
Okamoto
, in
Proceedings of the 28th International Symposium on Dry Process
,
Nagoya, Japan,
29–30 November, 2006 (
Institute of Electrical Engineers
of Japan, Tokyo,
2006
).
15.
L.
Xu
,
L.
Chen
,
M.
Funk
,
A.
Ranjan
,
M.
Hummel
,
R.
Bravenec
,
R.
Sundararajan
,
D. J.
Economou
, and
V. M.
Donnelly
,
Appl. Phys. Lett.
93
,
261502
(
2008
).
16.
C.
Mack
,
G.
Lorusso
, and
C.
Delvaux
,
Proc. SPIE
11611
,
116111B
(
2021
).
17.
J.
Severi
,
G.
Lorusso
,
D.
Simone
, and
C.
Mack
,
Proc. SPIE
11609
,
1160913
(
2021
).
18.
B.
Vincent
,
M.
Maslow
,
J.
Bekaert
,
M.
Mao
, and
J.
Ervin
,
Proc, SPIE
11323
,
1132326
(
2020
).
You do not currently have access to this content.