We have investigated the behavior of current flow across an inhomogeneous Schottky diode (SD) as a function of temperature by numerical simulation. We have used the modified thermionic emission (TE) current expression with a Gaussian distribution of potential barrier heights. This modified TE model assumes the presence of a series of low-barrier patches at the Schottky contact and semiconductor interface. First, we have discussed the behavior of the patch current compound relative to the TE compound in the inhomogeneous SD at 300, 200, and 100 K, as a function of standard deviation and the number of circular patches N. Then, we have investigated the behavior of temperature- and bias-dependent and bias-independent current vs voltage ( I V T ) characteristics in the 75–300 K range. In bias-dependent I V T curves obtained for σ 1 = 4.35 × 10 5 c m 2 / 3 V 1 / 3 and σ 2 = 7.35 × 10 5 c m 2 / 3 V 1 / 3 at N 1 = 1.81 × 10 6 or N 2 = 1.81 × 10 8, an intersection behavior has been observed in the I V curve at 75 K for σ 2 at both N values; however, the same behavior has been not observed for σ 1 at both N values due to σ 1 < σ 2. That is, the current for σ 2 at 75 K has exceeded the current at higher temperatures. This behavior has been ascribed to the effective BH to decrease with decreasing temperature value. In the I V T curves independent of bias, such an intersection has not been observed for σ 1 while it has been observed for σ 2 in the I V curves at both 75 and 100 K. Thus, it has been concluded that the bias-depende σnt I V equations must be used to avoid this intersection behavior while fitting the experimental I V curve of an SD to the theoretical I V curve.

1.
J. P.
Sullivan
,
R. T.
Tung
,
M. R.
Pinto
, and
W. R.
Graham
,
J. Appl. Phys.
70
,
7403
(
1991
).
3.
4.
M. S.
Gorji
and
K. Y.
Cheong
,
Crit. Rev. Solid State Mater. Sci.
40
,
197
(
2015
).
5.
H.
Helal
,
Z.
Benamara
,
E.
Comini
,
A. H.
Kacha
,
A.
Rabehi
,
K.
Khirouni
,
G.
Monier
,
C.
Robert-Goumet
, and
M.
Dominguez
,
Eur. Phys. J. Plus
137
,
450
(
2022
).
6.
M. C.
Özdemir
,
Sevgili
,
I.
Orak
, and
A.
Turut
,
Mater. Sci. Semicond. Process.
125
, 105629 (
2021
).
7.
E.
Ayyildiz
,
H.
Cetin
, and
Z. J.
Horváth
,
Appl. Surf. Sci.
252
,
1153
(
2005
).
8.
M.
Missous
,
E. H.
Rhoderick
,
D. A.
Woolf
, and
S. P.
Wilkes
,
Semicond. Sci. Technol.
7
,
218
(
1992
).
9.
V.
Kumar
,
A. S.
Maan
, and
J.
Akhtar
,
J. Vac. Sci. Technol.
32
,
041203
(
2014
).
10.
H.
Efeoğlu
,
A.
Turut
, and
M.
Gül
,
Opt. Mater.
142
,
114038
(
2023
).
11.
F.
Roccaforte
,
F.
Giannazzo
,
A.
Alberti
,
M.
Spera
,
M.
Cannas
,
I.
Cora
,
B.
Pécz
,
F.
Iucolano
, and
G.
Greco
,
Mater. Sci. Semicond. Process.
94
,
164
(
2019
).
12.
H.
Efeoğlu
and
A.
Turut
,
Mater. Sci. Semicond. Process.
143
,
106532
(
2022
).
13.
S.
Duman
,
B.
Gürbulak
, and
M.
Şata
,
Opt. Mater.
125
,
112138
(
2022
).
14.
H.
Efeoglu
,
A.
Turut
, and
M.
Gül
,
J. Vac. Sci. Technol. B
40
,
052208
(
2022
).
15.
V.
Kumar
,
J.
Verma
,
A. S.
Maan
, and
J.
Akhtar
,
Vacuum
182
,
109590
(
2020
).
16.
A.
De Luca
,
V.
Pathirana
,
S. Z.
Ali
,
D.
Dragomirescu
, and
F.
Udrea
,
Sens. Actuators A
222
,
31
(
2015
).
17.
M.
Mansoor
,
I.
Haneef
,
S.
Akhtar
, and
A.
De Luca
,
Sens. Actuators A
232
,
63
(
2015
).
18.
A.
Sauffi
,
S.
Ould
,
S.
Hamady
,
Z.
Hassan
,
M.
Anas
,
S.
Shiong
, and
W.
Foong
,
Mater. Sci. Semicond. Process.
172
,
108082
(
2024
).
19.
Y. P.
Song
,
R. L.
Van Meirhaeghe
,
W. H.
Laflère
, and
F.
Cardon
,
Solid State Electron.
29
,
633
(
1986
).
20.
J. H.
Werner
and
H. H.
Güttler
,
J. Appl. Phys.
69
,
1522
(
1991
).
21.
S.
Chand
and
J.
Kumar
,
J. Appl. Phys.
80
,
288
(
1996
).
23.
W. P.
Leroy
,
K.
Opsomer
,
S.
Forment
, and
R. L.
Van Meirhaeghe
,
Solid-State Electron.
49
,
878
(
2005
).
24.
P.
Lahnor
,
K.
Seiter
,
M.
Schulz
,
W.
Dorsch
, and
R.
Scholz
, Barrier-height non-uniformities of PtSi/Si (111) Schottky diodes,”
Appl. Phys. A.
61
,
369
(
1995
).
25.
K.
Ejderha
,
S.
Asubay
,
N.
Yildirim
,
Ö.
Güllü
,
A.
Turut
, and
B.
Abay
,
Surf. Rev. Lett.
24
,
1750052
(
2017
).
26.
R. T.
Tung
,
J. Vac. Sci. Technol. A
39
,
020803
(
2021
).
27.
A. R.
Deniz
,
Microelectron. Reliab.
147
,
115114
(
2023
).
28.
E.
Dobročka
and
J.
Osvald
,
Appl. Phys. Lett.
65
,
575
(
1994
).
29.
J.
Osvald
,
J. Appl. Phys.
85
,
1935
(
1999
).
30.
L.
Calcagno
,
A.
Ruggiero
,
F.
Roccaforte
, and
F.
La Via
,
J. Appl. Phys.
98
, 023713 (
2005
).
31.
H. J.
Im
,
Y.
Ding
,
J. P.
Pelz
, and
W. J.
Choyke
,
Phys. Rev. B
64
,
075310
(
2001
).
32.
A.
Olbrich
,
J.
Vancea
,
F.
Kreupl
, and
H.
Hoffmann
,
Appl. Phys. Lett.
70
,
2559
(
1997
).
33.
S.
Anand
,
S.-B.
Carlsson
,
K.
Deppert
,
L.
Montelius
, and
L.
Samuelson
,
J. Vac. Sci. Technol. B.
14
,
2794
(
1996
).
34.
A.
Fritah
,
L.
Dehimi
,
F.
Pezzimenti
,
A.
Saadoune
, and
B.
Abay
,
J. Electron. Mater.
48
,
3692
(
2019
).
35.
R. T.
Tung
,
Appl. Phys. Rev.
1
,
011304
(
2014
).
36.
M. Y.
Zaman
,
D.
Perrone
,
S.
Ferrero
,
L.
Scaltrito
, and
M.
Naretto
,
Mater. Sci. Forum
711
,
188
(
2012
).
37.
F.
Roccaforte
,
F.
Giannazzo
, and
V.
Raineri
,
J. Phys. D: Appl. Phys.
43
,
223001
(
2010
).
38.
R. F.
Schmitsdorf
,
T. U.
Kampen
, and
W.
Monch
,
J. Vac. Sci. Technol. B
15
,
1221
(
1997
).
39.
H.
Doǧan
,
N.
Yildirim
,
A.
Turut
,
M.
Biber
,
E.
Ayyildiz
, and
Ç.
Nuhoǧlu
,
Semicond. Sci. Technol.
21
,
822
(
2006
).
40.
M.
Biber
,
Ö.
Güllü
,
S.
Forment
,
R. L.
Van Meirhaeghe
, and
A.
Türüt
,
Semicond. Sci. Technol.
21
,
1
(
2006
).
41.
P. M.
Gammon
et al,
J. Appl. Phys.
114
, 223704 (
2013
).
42.
F. E.
Jones
,
C.
Daniels-Hafer
,
B. P.
Wood
,
R. G.
Danner
, and
M. C.
Lonergan
,
J. Appl. Phys.
90
,
1001
(
2001
).
43.
Ö. S.
Aniltürk
and
R.
Turan
,
Solid-State Electron.
44
,
41
(
2000
).
44.
A. F.
Hamida
,
Z.
Ouennoughi
,
A.
Sellai
,
R.
Weiss
, and
H.
Ryssel
,
Semicond. Sci. Technol.
23
,
045005
(
2008
).
45.
A. K.
Karan
,
D.
Sahoo
,
S.
Sen
,
S.
Rakshit
, and
N. B.
Manik
,
Surf. Interfaces
46
,
103952
(
2024
).
46.
V.
Kumar
,
S.
Pawar
,
A. S.
Maan
, and
J.
Akhtar
,
J. Vac. Sci. Technol. B
33
,
052207
(
2015
).
47.
R. T.
Tung
,
A. F. J.
Levi
,
J. P.
Sullivan
, and
F.
Schrey
,
Phys. Rev. Lett.
66
,
72
(
1991
).
48.
S.
Zhu
,
R. L.
Van Meirhaeghe
,
C.
Detavernier
,
F.
Cardon
,
G. P.
Ru
,
X. P.
Qu
, and
B. Z.
Li
,
Solid-State Electron.
44
,
663
(
2000
).
49.
G. P.
Ru
,
R. L.
Van Meirhaeghe
,
S.
Forment
,
Y. L.
Jiang
,
X. P.
Qu
,
S.
Zhu
, and
B. Z.
Li
,
Solid-State Electron.
49
,
606
(
2005
).
50.
R. T.
Tung
,
Mater. Sci. Eng. R. Rep.
35
,
1
(
2001
).
51.
A.
Karabulut
,
H.
Efeoglu
, and
A.
Turut
,
J. Semicond.
38
,
054003
(
2017
).
52.
H.
Chakir
,
M.
Mamor
, and
K.
Bouziane
,
Indian J. Phys.
98
, 1623 (
2024
).
53.
S.
Duman
,
Semicond. Sci. Technol.
23
, 075042 (
2008
).
54.
I.
Taşçoǧlu
,
U.
Aydemir
, and
Ş.
Altndal
,
J. Appl. Phys.
108
,
064506
(
2010
).
55.
H.
Efeoglu
,
A.
Turut
, and
M.
Gül
,
J. Electron. Mater.
52
,
1410
(
2023
).
56.
H.
Efeoglu
and
A.
Turut
,
J. Vac. Sci. Technol. B
41
,
022207
(
2023
).
57.
F. M.
Coskun
,
O.
Polat
,
M.
Coskun
,
A.
Turut
,
M.
Caglar
,
Z.
Durmus
, and
H.
Efeoǧlu
,
J. Appl. Phys.
125
,
214104
(
2019
).
58.
O.
Polat
,
M.
Coskun
,
H.
Efeoglu
,
M.
Caglar
,
F. M.
Coskun
, and
Y.
Caglar
,
J. Phys.: Condens. Matter
33
,
035704
(
2021
).
59.
N.
Yildirim
,
A.
Turut
, and
V.
Turut
,
Microelectron. Eng.
87
,
2225
(
2010
).
60.
N.
Yildirim
and
A.
Türüt
,
Microelectron. Eng.
86
,
2270
(
2009
).
61.
F.
Roccaforte
,
F.
La Via
,
V.
Raineri
,
R.
Pierobon
, and
E.
Zanoni
,
J. Appl. Phys.
93
,
9137
(
2003
).
62.
J.
Osvald
,
L.
Hrub
, and
B.
Za
,
Mater. Sci. Semicond. Process.
140
, 106413 (
2022
).
63.
Ş
Karataş
,
Ş
Altindal
,
A.
Türüt
, and
M.
Çakar
,
Physica B
392
,
43
(
2007
).
64.
S.
Chand
,
Semicond. Sci. Technol.
17
,
L36
(
2002
).
65.
S.
Chand
,
Semicond. Sci. Technol.
19
,
82
(
2004
).
66.
J.
Osvald
,
Semicond. Sci. Technol.
18
, L24 (
2003
).
67.
J.
Osvald
,
Solid-State Electron.
50
,
228
(
2006
).
68.
P.
Kaushal
,
S.
Chand
, and
J.
Osvald
,
Int. J. Electron.
100
,
686
(
2013
).
69.
S.
Chand
and
S.
Bala
,
Semicond. Sci. Technol.
20
,
1143
(
2005
).
70.
S.
Chand
and
S.
Bala
,
Appl. Surf. Sci.
252
,
358
(
2005
).
71.
G. P.
Ru
,
R.
Yu
,
Y. L.
Jiang
, and
G.
Ruan
,
Chin. Phys. B
19
, 097304 (
2010
).
72.
You do not currently have access to this content.