We study the interaction with photodetectors of near infrared (NIR) laser light with power P in the range of mW and period τ = 3.55 fs (wavelength λ = 1064 nm, frequency ν = 0.28 PHz). We fabricate the photodetectors by depositing different sequences of thin TiO2/TiN nano-laminates onto glass substrates using atomic layer deposition (ALD). To evaluate the photodetector's performance, we assume Pτ to be the energy transferred to them from NIR laser light, allowing us to extract the photodetector's inductance L at zero bias voltage, and to explicitly link P to the photocurrent ΔI, or photovoltage ΔV, generated by the photodetector. Such a link is observed in the literature, but not justified. We further assume Pλ = P λ/lact to be the effective power illuminating the photodetector with size lact. This assumption enables us to determine the photodetector's current responsivity (πI), noise equivalent power (NEP), and detectivity (D). To establish whether Pτ and Pλ correctly account for the energy and the power involved in the photodetector's interaction with light, we compare L, πI, NEP, and D of our photodetectors to the corresponding parameters of state-of-the-art (SOA) devices reported in the literature. The comparison indicates that the L, πI, NEP, and D of our photodetectors are in the range of SOA devices, thus validating our assumptions on Pτ and Pλ. Finally, our findings provide suggestions on how to improve thin ALD TiO2/TiN nano-laminates as suitable active materials in photodetectors.

1.
Z.
Lian
et al,
Nat. Sustainability
5
,
1092
(
2022
).
2.
J.
Yang
,
J.
Li
,
A.
Bahrami
,
N.
Nasiri
,
S.
Lehmann
,
M. O.
Cichocka
,
S.
Mukherjee
, and
K.
Nielsch
,
ACS App. Mater. Interfaces
4
,
54034
(
2022
).
3.
W.-Y.
Lee
,
K.
Kim
,
S.-H.
Lee
,
J.-H.
Bae
,
I.-M.
Kang
,
M.
Park
,
K.
Kim
, and
J.
Jang
,
ACS Omega
7
,
10262
(
2022
).
6.
H.
Qiu
,
Z.-M.
Zhong
,
M.-J.
Li
,
L.
Ying
,
G.
Yu
,
F.
Huang
, and
Y.
Cao
,
Acta Polym. Sin.
53
,
433
(
2022
).
7.
R. P.
Given
,
K. S.
Wenger
,
V. D.
Wheeler
,
B. C.
Utter
, and
G.
Scarel
,
J. Vac. Sci. Technol., A
35
,
01B120
(
2017
).
8.
N. A.
Güsken
et al,
ACS Photonics
6
,
953
(
2019
).
9.
D. H.
Kim
,
M. D.
Losego
,
Q.
Peng
, and
G. N.
Parsons
,
Adv. Mater. Interfaces
3
,
1600354
(
2016
).
10.
K.
Lu
,
Y.
Gao
,
Z.
Wang
,
X.
Wang
, and
H.
Meng
,
J. Mater. Chem. C
11
,
8600
(
2023
).
11.
S.
Dhara
,
E. J.
Mele
, and
R.
Agarwal
,
Science
349
,
726
(
2015
).
12.
G. B.
Osterhoudt
et al,
Nat. Mater.
18
,
471
(
2019
).
13.
B.
Deng
,
C.
Ma
,
Q.
Wang
,
S.
Yuan
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Zhang
, and
F.
Xia
,
Nat. Photonics
14
,
549
(
2020
).
14.
15.
S.
Ghosh
,
A.
Varghese
,
K.
Thakar
,
S.
Dhara
, and
S.
Lodha
,
Nat. Commun.
12
,
3336
(
2021
).
17.
M.
Asgari
,
L.
Viti
,
V.
Zannier
,
L.
Sorba
, and
M. S.
Vitiello
,
Nanomaterials
11
,
3378
(
2021
).
19.
R. J.
Rybarczyk
,
A. E. D.
Federick
,
O.
Kokhan
,
R.
Luckay
, and
G.
Scarel
,
AIP Adv.
12
,
045201
(
2022
).
21.
X.
Lan
,
Y.
Liu
,
J.
Xu
,
C.
Liu
,
P.
Liu
,
C.
Liu
,
W.
Zhou
, and
F.
Jiang
,
Nanoscale
14
,
18003
(
2022
).
22.
T. M.
Klapwijk
and
P. J.
de Visser
,
Ann. Phys.
417
,
168104
(
2020
).
23.
W.
Liang
,
C.
Nie
,
J.
Du
,
Y.
Han
,
G.
Zhao
,
F.
Yang
,
G.
Liang
, and
K.
Wu
,
Nat. Photonics
17
,
346
(
2023
).
24.
L.
Liang
,
C.
Wang
,
J.
Chen
,
Q. J.
Wang
, and
X.
Liu
,
Nat. Photonics
16
,
712
(
2022
).
25.
T. B.
Arp
,
J.
Kistner-Morris
,
V.
Aji
,
R. J.
Cogdell
,
R.
van Grondelle
, and
N. M.
Gabor
,
Science
368
,
1490
(
2020
).
26.
F. E.
Torres-Davila
,
M.
Molinari
,
R. G.
Blair
,
N.
Rochdi
, and
L.
Tetard
,
Nano Lett.
22
,
8196
(
2022
).
29.
P.
Février
,
J.
Basset
,
J.
Estève
,
M.
Aprili
, and
J.
Gabelli
,
Commun. Phys.
6
,
29
(
2023
).
30.
Y.
Li
et al,
J. Mater. Chem. C
8
,
12148
(
2020
).
32.
W.
Deng
,
C.
Wang
,
M.
Dai
,
F.
Wang
,
J.
Han
,
F.
Sun
,
Q. J.
Wang
, and
Y.
Zhang
,
Appl. Phys. Lett.
121
,
112105
(
2022
).
33.
Y.-C.
Chen
et al,
J. Alloys Compd.
9365
,
168127
(
2023
).
35.
S.-Y.
Chu
,
T.-H.
Yeh
,
C.-T.
Lee
, and
H.-Y.
Lee
,
Mater. Sci. Semicond. Process.
142
,
106471
(
2022
).
36.
S.-Y.
Chu
,
M.-X.
Shen
,
T.-H.
Yeh
,
C.-H.
Chen
,
C.-T.
Lee
, and
H.-Y.
Lee
,
Sensors
20
,
6159
(
2020
).
37.
D.-H.
Zhao
et al,
ACS Appl. Nano Mater.
5
,
10431
(
2022
).
38.
Z. A.
Azad
,
M. S. A.
Khezrabad
, and
A.
Shokri
,
Mater. Sci. Eng., B
278
,
115607
(
2022
).
39.
S.
Park
,
Y.
Lim
,
C.-J.
Heo
,
S.
Yun
,
D.-S.
Leem
,
S.
Kim
,
B.
Choi
, and
K.-B.
Park
,
Optica
9
,
992
(
2022
).
40.
T.
Zhu
,
L.
Shen
,
D.
Zhang
,
J.
Zheng
, and
X.
Gong
,
ACS App. Mater. Interfaces
14
,
18744
(
2022
).
41.
K.
Wang
,
X.
Qiu
,
Z.
Lv
,
Z.
Song
, and
H.
Jiang
,
Photonics Res.
10
,
111
(
2022
).
42.
Z.
Zhou
,
G.
Liao
,
X.
Song
,
Q.
Dai
,
L.
Sun
,
Y.
Peng
, and
P.
Wang
,
Nanoscale Res. Lett.
17
,
19
(
2022
).
44.
Y.
Liu
,
J.
Sun
,
L.
Tong
,
Y.
Li
, and
T.
Deng
,
Opt. Express
30
,
43706
(
2022
).
45.
L.
Viti
et al, in
47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz)
,
Delft, Netherlands
, 28 August–2 September (IEEE,
2022
).
46.
X.-Y.
Wang
,
Y.-W.
Zhang
,
L.
Wang
, and
X.-S.
Chen
,
J. Infrared Millim. Terahertz Waves
41
,
696
(
2022
).
47.
C.
Ma
,
S.
Yuan
,
P.
Cheung
,
K.
Watanabe
,
T.
Taniguchi
,
F.
Zhang
, and
F.
Xia
,
Nature
604
,
266
(
2022
).
49.
S.
Sayed
,
S.
Salahuddin
, and
E.
Yablonovitch
,
Appl. Phys. Lett.
118
,
052408
(
2021
).
52.
Other ways to directly measure the noise equivalent power (NEP) are reported in https://www.rp-photonics.com/noise_equivalent_power.html.
53.
M.
Ejrnaes
,
R.
Cristiano
,
O.
Quaranta
,
S.
Pagano
,
A.
Gaggero
,
F.
Mattioli
,
R.
Leoni
,
B.
Voronov
, and
G.
Gol’tsman
,
Appl. Phys. Lett.
91
,
262509
(
2007
).
55.
N.
Bluzer
,
J. Appl. Phys.
78
,
7340
(
1995
).
56.
R. H.
Hadfield
,
A. J.
Miller
,
S. W.
Nam
,
R. L.
Kautz
, and
R. E.
Schwall
,
Appl. Phys. Lett.
87
,
203505
(
2005
).
57.
M.
Pechal
,
J.-C.
Besse
,
M.
Mondal
,
M.
Oppliger
,
S.
Gasparinetti
, and
A.
Wallraff
,
Phys. Rev. Appl.
6
,
024009
(
2016
).
58.
W. D.
Wheeler
et al,
ECS Trans.
80
,
17
(
2017
).
59.
See supplementary material for the equations for the energy Pτ and the effective power Pλ. We also present an example from Ref. 57 on how inductance L is estimated independently of the energy Pτ. Finally, we report updated publications appeared after our manuscript was accepted.

Supplementary Material

You do not currently have access to this content.