The prevalence of breast cancer in women underscores the urgent need for innovative and efficient detection methods. This study addresses this imperative by harnessing salivary biomarkers, offering a noninvasive and accessible means of identifying breast cancer. In this study, commercially available disposable based strips similar to the commonly used glucose detection strips were utilized and functionalized to detect breast cancer with biomarkers of HER2 and CA15-3. The results demonstrated limits of detection for these two biomarkers reached as low as 1 fg/ml much lower than those of conventional enzyme-linked immunosorbent assay in the range of 1∼4 ng/ml. By employing a synchronized double-pulse method to apply 10 of 1.2 ms voltage pulses to the electrode of sensing strip and drain electrode of the transistor for amplifying the detected signal, and the detected signal was the average of 10 digital output readings corresponding to those 10 voltage pulses. The sensor sensitivities were achieved approximately 70/dec and 30/dec for HER2 and CA15-3, respectively. Moreover, the efficiency of this novel technique is underscored by its swift testing time of less than 15 ms and its minimal sample requirement of only 3 μl of saliva. The simplicity of operation and the potential for widespread public use in the future position this approach as a transformative tool in the early detection of breast cancer. This research not only provides a crucial advancement in diagnostic methodologies but also holds the promise of revolutionizing public health practices.

1.
A. N.
Giaquinto
,
H.
Sung
,
K. D.
Miller
,
J. L.
Kramer
,
L. A.
Newman
,
A.
Minihan
,
A.
Jemal
, and
R. L.
Siegel
,
Cancer J. Clin.
72
,
524
(
2022
).
3.
The American Cancer Society medical and editorial content team
, Key Statistics for Breast Cancer (2023) see https://www.cancer.org/cancer/types/breast-cancer/about/how-common-is-breast-cancer.html.
4.
S. H.
Jafari
,
Z.
Saadatpour
,
A.
Salmaninejad
,
F.
Momeni
,
M.
Mokhtari
,
J. S.
Nahand
,
M.
Rahmati
,
H.
Mirzaei
, and
M.
Kianmehr
,
J. Cell. Physiol.
233
,
5200
(
2018
).
5.
L. E.
Pace
and
N. L.
Keating
,
JAMA
311
,
1327
(
2014
).
6.
N.
Samy
,
H. M.
Ragab
,
N. A.
El Maksoud
, and
M.
Shaalan
,
Cancer Biomark.
6
,
63
(
2010
).
7.
F.
Laidi
,
A.
Bouziane
,
A.
Errachid
, and
F.
Zaoui
,
Asian Pac. J. Cancer Prev.
17
,
335
(
2016
).
8.
F.
Laidi
,
A.
Bouziane
,
A.
Lakhdar
,
S.
Khabouze
,
M.
Amrani
,
B.
Rhrab
, and
F.
Zaoui
,
Asian Pac. J. Cancer Prev.
15
,
4659
(
2014
).
9.
S.
Mittal
,
H.
Kaur
,
N.
Gautam
, and
A. K.
Mantha
,
Biosens. Bioelectron.
88
,
217
(
2017
).
10.
E. C.
Porto-Mascarenhas
,
D. X.
Assad
,
H.
Chardin
,
D.
Gozal
,
G. D. L.
Canto
,
A. C.
Acevedo
, and
E. N. S.
Guerra
,
Crit. Rev. Oncol. Hematol.
110
,
62
(
2017
).
11.
C. F.
Streckfus
,
D.
Arreola
,
C.
Edwards
, and
L.
Bigler
,
J. Oncol.
2012
,
413256
.
12.
R.-N.
Zhao
,
Z.
Feng
,
Y.-N.
Zhao
,
L.-P.
Jia
,
R.-N.
Ma
,
W.
Zhang
,
L.
Shang
,
Q.-W.
Xue
, and
H.-S.
Wang
,
Talanta
200
,
503
(
2019
).
13.
A.
Berezov
,
H.-T.
Zhang
,
M. I.
Greene
, and
R.
Murali
,
J. Med. Chem.
44
,
2565
(
2001
).
15.
V.
Agnolon
,
A.
Contato
,
A.
Meneghello
,
E.
Tagliabue
,
G.
Toffoli
,
M.
Gion
,
F.
Polo
, and
A. S.
Fabricio
,
Sci. Rep.
10
,
3016
(
2020
).
16.
P.
Mehrotra
,
J. Oral Biol. Craniofacial Res.
6
,
153
(
2016
).
17.
Y.-C.
Syu
,
W.-E.
Hsu
, and
C.-T.
Lin
,
ECS J. Solid State Sci. Technol.
7
,
Q3196
(
2018
).
18.
T.
Wadhera
,
D.
Kakkar
,
G.
Wadhwa
, and
B.
Raj
,
J. Electron. Mater.
48
,
7635
(
2019
).
19.
K.-I.
Chen
,
B.-R.
Li
, and
Y.-T.
Chen
,
Nano Today
6
,
131
(
2011
).
22.
J.
Kim
,
F.
Kim
, and
J.
Huang
,
Mater. Today
13
,
28
(
2010
).
23.
I.
Sarangadharan
,
A. K.
Pulikkathodi
,
C.-H.
Chu
,
Y.-W.
Chen
,
A.
Regmi
,
P.-C.
Chen
,
C.-P.
Hsu
, and
Y.-L.
Wang
,
ECS J. Solid State Sci. Technol.
7
,
Q3032
(
2018
).
24.
25.
J.
Sengupta
and
C. M.
Hussain
,
Carbon Trends
2
,
100011
(
2021
).
26.
J.
Xu
,
J.
Jia
,
S.
Lai
,
J.
Ju
, and
S.
Lee
,
Appl. Phys. Lett.
110
,
033103
(
2017
).
27.
P. H.
Carey
et al,
J. Electrochem. Soc.
167
,
037507
(
2019
).
28.
P. H.
Carey
,
J.
Yang
,
F.
Ren
,
Y.-T.
Liao
,
C.-W.
Chang
,
J.
Lin
,
S. J.
Pearton
,
B.
Lobo
, and
M. E.
Leon
,
J. Electrochem. Soc.
166
,
B708
(
2019
).
29.
K.
Chen
et al,
Appl. Phys. Lett.
92
, 192103 (
2008
).
30.
J.
Yang
,
P.
Carey IV
,
F.
Ren
,
M. A.
Mastro
,
K.
Beers
,
S.
Pearton
, and
I. I.
Kravchenko
,
Appl. Phys. Lett.
113
,
032101
(
2018
).
31.
M.
Xian
et al,
J. Vac. Sci. Technol. B
40
,
023202
(
2022
).
32.
M.
Xian
et al,
J. Vac. Sci. Technol. B
39
,
033202
(
2021
).
33.
Z.
Zhan
, Certificate of Analysis: Recombinant Anti-MUC1 Antibody, Rabbit Monoclonal. SinoBiological, see https://www.sinobiological.com/antibodies/human-muc1-12123-r003.
34.
Z.
Zhan
, Certificate of Analysis: Recombinant Anti-Her2/ERBB2 Antibody, Rabbit Monoclonal. SinoBiological, see https://www.sinobiological.com/antibodies/human-her2-erbb2-10004-r002.
35.
C.-C.
Chiang
,
C.-W.
Chiu
,
F.
Ren
,
C.-T.
Tsai
,
Y.-T.
Liao
,
J. F.
Esquivel-Upshaw
, and
S. J.
Pearton
,
J. Vac. Sci. Technol. B
41
,
012204
(
2023
).
36.
S.-S.
Shan
et al,
IEEE Trans. Biomed. Circuits Syst.
1
,
1362
(
2020
).
37.
J.
Yang
,
P.
Carey IV
,
F.
Ren
,
Y.-L.
Wang
,
M. L.
Good
,
S.
Jang
,
M. A.
Mastro
, and
S.
Pearton
,
Appl. Phys. Lett.
111
,
202104
(
2017
).
38.
S.
Tian
,
K.
Zeng
,
A.
Yang
,
Q.
Wang
, and
M.
Yang
,
J. Immunol. Methods
451
,
78
(
2017
).
39.
M.
Xian
et al,
J. Vac. Sci. Technol. B
41
,
013201
(
2023
).
41.
L. F.
Abrahao-Machado
and
C.
Scapulatempo-Neto
,
World J. Gastroenterol.
22
,
4619
(
2016
).
42.
D.
Baskic
,
P.
Ristic
,
S.
Pavlovic
, and
N.
Arsenijevic
,
J. Balkan Union Oncol.
9
,
289
(
2004
).
43.
D.
Di Gioia
,
M.
Dresse
,
D.
Mayr
,
D.
Nagel
,
V.
Heinemann
, and
P.
Stieber
,
Clin. Chim. Acta
440
,
16
(
2015
).
44.
S.
Haidar
,
P. B.
Bhanushali
,
K. K.
Shukla
,
D.
Modi
,
C. P.
Puri
,
S. B.
Badgujar
, and
M.
Chugh
,
Int. J. Biol. Macromol.
107
,
1456
(
2018
).
45.
P.
Zhang
,
J.
Xiao
,
Y.
Ruan
,
Z.
Zhang
, and
X.
Zhang
,
Cancer Manag. Res.
12
,
4667
(
2020
).
You do not currently have access to this content.