Recent advances in nanofabrication have made it possible to combine planar solid-state devices with vacuum electronics to create planar nano vacuum channel transistors that offer the advantages of cold-field emission and ballistic transmission. However, the current research is mainly limited to the study of a single field emission transistor, which has problems such as low current and poor gate control capability. To solve the above problems, a multitip field emission array is used in this work, and gate modulation is performed by a back-gate structure to fabricate and process a back-gate nano vacuum transistor array. First, we conducted simulation modeling of the back-gate nano vacuum transistor, investigated the impact of its structural parameters on its performance, and obtained the optimal simulation results. Then, structural parameters of the back-gate nano vacuum channel transistor array (BG-NVCTA) are selected based on the simulation results and fabricated by electron beam lithography on the silicon wafer. The experimental results, agreed well with the simulation results, show that the BG-NVCTA device has excellent gate control characteristics and a high current density. Its anode current is greater than 5 μA, and the transconductance is 1.05 μS when the anode voltage is 5 V.

1.
B. R.
Stoner
and
J. T.
Glass
,
Nat. Nanotechnol.
7
,
485
(
2012
).
2.
D. M.
Trucchi
and
N. A.
Melosh
,
MRS Bull.
42
,
488
(
2017
).
4.
G.
Gaertner
,
J. Vac. Sci. Technol. B
30
,
060801
(
2012
).
5.
6.
M.
Neisser
,
J. Micro/Nanopattern. Mats. Metro.
20
,
044601
(
2021
).
7.
J. W.
Han
,
J. S.
Oh
, and
M.
Meyyappan
,
Appl. Phys. Lett.
100
,
213505
(
2012
).
8.
C. A.
Spindt
,
C. E.
Holland
,
A.
Rosengreen
, and
I.
Brodie
,
IEEE Trans. Electron Devices
38
,
2355
(
1991
).
9.
S.-S.
Park
,
D.-I.
Park
,
S.-H.
Hahm
,
J.-H.
Lee
, and
H.-C.
Choi
,
IEEE Trans. Electron Devices
46
,
1283
(
1999
).
10.
S.
Han
,
S.
Yang
,
T.
Hwang
,
J.
Lee
,
J. D.
Lee
, and
H.
Shin
,
Jpn. J. Appl. Phys.
39
,
2556
(
2000
).
11.
J.-W.
Han
,
J. S.
Oh
, and
M.
Meyyappan
,
IEEE Trans. Nanotechnol.
13
,
464
(
2014
).
12.
S.
Nirantar
,
T.
Ahmed
,
G.
Ren
,
P.
Gutruf
,
C.
Xu
,
M.
Bhaskaran
,
S.
Walia
, and
S.
Sriram
,
Nano Lett.
18
,
7478
(
2018
).
13.
A.
Di Bartolomeo
,
A.
Pelella
,
F.
Urban
,
A.
Grillo
,
L.
Iemmo
,
M.
Passacantando
,
X.
Liu
, and
F.
Giubileo
,
Adv. Electron. Mater.
6
,
2000094
(
2020
).
14.
M.
Turchetti
,
Y.
Yang
,
M.
Bionta
,
A.
Nardi
,
L.
Daniel
,
K. K.
Berggren
, and
P. D.
Keathley
,
IEEE Trans. Electron Devices
69
,
3953
(
2022
).
15.
Y.
Zuo
, in
ICCTEC
,
Dalian
,
19–21 December 2017
(
IEEE
,
New York
,
2017
), p.
131
.
16.
E. G.
Pogorelov
,
A. I.
Zhbanov
, and
Y.-C.
Chang
,
Ultramicroscopy
109
,
373
(
2009
).
17.
L. B.
De Rose
,
W. M.
Jones
, and
A.
Scherer
,
Appl. Phys. Lett.
123
,
013505
(
2023
).
18.
S.
Srisonphan
,
IEEE Electron Device Lett.
42
,
1540
(
2021
).
19.
S.
Srisonphan
and
K.
Jitkajornwanich
,
IEEE Trans. Electron Devices
65
,
2601
(
2018
).
20.
G.
Gaertner
,
W.
Knapp
, and
G. R.
Forbes
,
Modern Developments in Vacuum Electron Sources
(
Springer
,
Berlin
,
2020
).
21.
D.
Tomer
,
S.
Rajput
,
L. J.
Hudy
,
C. H.
Li
, and
L.
Li
,
Appl. Phys. Lett.
106
,
173510
(
2015
).
22.
M.
Sometani
et al,
J. Appl. Phys.
117
,
024505
(
2015
).
23.
24.
L. B.
De Rose
,
A.
Scherer
, and
W. M.
Jones
,
IEEE Trans. Electron Devices
67
,
5125
(
2020
).
You do not currently have access to this content.