In this work, the synthesis of germanium-tin (GeSn) films by magnetron sputtering is reported. A fractional factorial experiment was conducted; the varied factors were temperature, power applied to Ge target by a radio-frequency source, and power applied to the Sn target by a direct-current source. Vibrational modes, film composition, morphology, deposition rate, dark conductivity, Raman spectra, and Fourier-transform infrared (FTIR) spectra of the GeSn films were analyzed. Mid-infrared spectrum of emission and absorption was obtained by FTIR electroluminescence (EL) spectroscopy in the range of 400– 4000 cm 1, thermal emission was monitored by a FLIR camera in the range of 8– 14 μ m, and power emitted from the GeSn films was measured in the range of 2.7– 5.3 μ m by means of a InAsSb photodetector; results obtained by these approaches at room temperature and low-field bias were consistent. Sample Ge 0.71Sn 0.29 exhibited Ge Raman crystalline fraction of 85%; from FTIR EL spectrum were observed peaks of absorption located at 1084, and 606  cm 1 that was attributed to Si Si bonds from the c-Si substrate, as well as broadband attenuation of 2% in the range of 1500 3500 cm 1, this behavior was associated to the self-heating of this sample at 90  °C. Sample Ge 0.3Sn 0.7 showed Raman crystalline fraction of 16 and 22% for Ge and Sn, respectively; from FTIR EL spectrum were observed peaks of emission located at 2.74  μ m (0.452 eV) and 6.66  μ m (0.186 eV), as well as broadband emission in the range of 600–2000  cm 1 attributed to Planck’s law at a temperature of 45  °C; these results were correlated to the proper content of Ge and Sn, fluctuating current, and polymorphic morphology of this sample.

1.
R.
Soref
, in
Silicon Photonics VIII
(SPIE, San Francisco, CA, 2013), Vol. 8629, p. 862902.
2.
R.
Soref
,
Opt. Mater. Express
4
,
836
(
2014
).
3.
R.
Soref
,
D.
Buca
, and
S.-Q.
Yu
,
Opt. Photonics News
27
,
32
(
2016
).
4.
Y.
Zhou
et al.,
Photonics Res.
10
,
222
(
2022
).
5.
M.
Oehme
et al.,
IEEE Photonic. Tech. Lett.
26
,
187
(
2013
).
6.
D.
Stange
et al.,
Opt. Express
24
,
1358
(
2016
).
7.
S.
Kim
,
N.
Bhargava
,
J.
Gupta
,
M.
Coppinger
, and
J.
Kolodzey
,
Opt. Express
22
,
11029
(
2014
).
9.
S.
An
,
Y.-C.
Huang
,
C.-Y.
Wu
,
P.-R.
Huang
,
G.-E.
Chang
,
J.
Lai
,
J.-H.
Seo
, and
M.
Kim
,
Adv. Mater. Technol.
8
,
2201136
(
2023
).
10.
E.
Kasper
,
M.
Kittler
,
M.
Oehme
, and
T.
Arguirov
,
Photonics Res.
1
,
69
(
2013
).
11.
12.
K. P.
Homewood
and
M. A.
Lourenço
,
Nat. Photonics
9
,
78
(
2015
).
13.
S.
Zaima
,
O.
Nakatsuka
,
N.
Taoka
,
M.
Kurosawa
,
W.
Takeuchi
, and
M.
Sakashita
,
Sci. Technol. Adv. Mat.
16
,
043502
(
2015
).
14.
K.
Suda
,
T.
Uno
,
T.
Miyakawa
,
H.
Machida
,
M.
Ishikawa
,
H.
Sudo
,
Y.
Ohshita
, and
A.
Ogura
,
ECS Trans.
53
,
245
(
2013
).
15.
T.
de Vrijer
,
K.
Roodenburg
,
F.
Saitta
,
T.
Blackstone
,
G.
Limodio
, and
A. H.
Smets
,
Appl. Mater. Today
27
,
101450
(
2022
).
16.
17.
D.
Grützmacher
,
O.
Concepción
,
Q.-T.
Zhao
, and
D.
Buca
,
Appl. Phys. A
129
,
235
(
2023
).
18.
S.
Wirths
,
D.
Buca
, and
S.
Mantl
,
Prog. Cryst. Growth Character. Mater.
62
,
1
(
2016
).
19.
H.
Mahmodi
,
M.
Hashim
, and
U.
Hashim
,
Superlattice. Microst.
98
,
235
(
2016
).
20.
J.
Yang
,
H.
Hu
,
Y.
Miao
,
L.
Dong
,
B.
Wang
,
W.
Wang
,
H.
Su
,
R.
Xuan
, and
H.
Zhang
,
Materials
12
,
2662
(
2019
).
21.
M.
Abdel-Rahman
,
M.
Alduraibi
,
M.
Hezam
, and
B.
Ilahi
,
Infrared Phys. Techn.
97
,
376
(
2019
).
22.
J.
Zheng
,
Z.
Liu
,
Y.
Zhang
,
Y.
Zuo
,
C.
Li
,
C.
Xue
,
B.
Cheng
, and
Q.
Wang
,
J. Cryst. Growth
492
,
29
(
2018
).
23.
J.
Zheng
,
S.
Wang
,
Z.
Liu
,
H.
Cong
,
C.
Xue
,
C.
Li
,
Y.
Zuo
,
B.
Cheng
, and
Q.
Wang
,
Appl. Phys. Lett.
108
,
033503
(
2016
).
24.
P. J.
Kelly
and
R. D.
Arnell
,
Vacuum
56
,
159
(
2000
).
25.
J. S.
Chapin
, “Sputtering process and apparatus,” U.S. Patent 4,166,018 (31 January 1974).
26.
J. T.
Gudmundsson
,
Plasma Sources Sci. Technol.
29
,
113001
(
2020
).
27.
V.
Steenhoff
,
M.
Juilfs
,
R.-E.
Ravekes
,
M.
Vehse
, and
C.
Agert
,
Nano Energy
27
,
658
(
2016
).
28.
L.
Jin
,
D.
Zhang
,
H.
Zhang
,
J.
Fang
,
Y.
Liao
,
T.
Zhou
,
C.
Liu
,
Z.
Zhong
, and
V. G.
Harris
,
Sci. Rep.
6
,
34030
(
2016
).
29.
A.
Vasin
,
F.
Oliveira
,
M.
Cerqueira
,
J.
Schulze
, and
M.
Vasilevskiy
,
J. Appl. Phys.
124
,
035105
(
2018
).
30.
V. R.
D’Costa
,
J.
Tolle
,
C. D.
Poweleit
,
J.
Kouvetakis
, and
J.
Menéndez
,
Phys. Rev. B
76
,
035211
(
2007
).
31.
H.
Mahmodi
,
M. R.
Hashim
,
T.
Soga
,
S.
Alrokayan
,
H. A.
Khan
, and
M.
Rusop
,
Materials
11
,
2248
(
2018
).
32.
B.
Lafuente
,
R. T.
Downs
,
H.
Yang
, and
N.
Stone
, “1. The power of databases: The RRUFF project,” in
Highlights in Mineralogical Crystallography
, edited by T. Armbruster and R. M. Danisi (De Gruyter, Berlin, 2016), pp. 1–30.
33.
P. A.
Folkes
,
P.
Taylor
,
C.
Rong
,
B.
Nichols
,
H.
Hier
, and
M.
Farrell
, “Raman scattering from tin,” Report ARL-TR-7448 (Army Research Laboratory, 2015).
34.
R. W.
Vook
,
J. Appl. Phys.
32
,
1557
(
1961
).
35.
W. W.
Hernández-Montero
,
C.
Zúñiga-Islas
,
A.
Itzmoyotl-Toxqui
,
J.
Molina-Reyes
, and
L. E.
Serrano-De la Rosa
,
J. Vac. Sci. Technol. B
35
,
011204
(
2017
).
36.
J. H.
Parker
,
D. W.
Feldman
, and
M.
Ashkin
,
Phys. Rev.
155
,
712
(
1967
).
37.
R.
Collins
and
H.
Fan
,
Phys. Rev.
93
,
674
(
1954
).
38.
W. W.
Hernández-Montero
,
I. E.
Zaldívar-Huerta
,
C.
Zúñiga-Islas
,
A.
Torres-Jácome
,
C.
Reyes-Betanzo
, and
A.
Itzmoyotl-Toxqui
,
Opt. Mater. Express
2
,
358
(
2012
).
39.
W. W.
Hernández-Montero
,
A.
Itzmoyotl-Toxqui
, and
C.
Zúñiga-Islas
,
J. Vac. Sci. Technol. B
39
,
042203
(
2021
).
40.
S.
Kasap
,
Principles of Electronic Materials and Devices
(
McGraw-Hill
,
New York
,
2006
).
41.
A. C.
MacGillivray
,
N. I.
Lesack
,
I. R.
Hristovski
,
M. F.
Jenne
,
B. C.
Maglio
,
S.
Gorgani
, and
J. F.
Holzman
,
Phys. Rev. B
105
,
155203
(
2022
).
42.
Q. G.
Alexander
and
C. V.
Lunderman
, “Thermal camera reliability study: FLIR One Pro,” ERDC/ITL Report TN-21-1, September (2021).
43.
A.
Reisinger
,
R.
Roberts
,
S.
Chinn
, and
T.
Myers II
,
Rev. Sci. Instrum.
60
,
82
(
1989
).
44.
Y.
Zhang
,
Y.
Gu
,
K.
Wang
,
X.
Fang
,
A.
Li
, and
K.
Liu
,
Rev. Sci. Instrum.
83
,
053106
(
2012
).
45.
X.
Liu
et al.,
Photonics Res.
10
,
1567
(
2022
).
46.
J. C.
Freeman
,
Solid State Electron.
95
,
8
(
2014
).
You do not currently have access to this content.