We investigate the influence of the geometry and doping level on the performance of n-type silicon nanowire field emitters on silicon pillar structures. Therefore, multiple cathodes with 50 by 50 pillar arrays (diameter: 5 μm, height: 30 μm, spacing: 50 μm) were fabricated and measured in diode configuration. In the first experiment, we compared two geometry types using the same material. Geometry 1 is black silicon, which is a highly dense surface covering a forest of tightly spaced silicon needles resulting from self-masking during a plasma etching process of single crystal silicon. Geometry 2 are silicon nanowires, which are individual spaced-out nanowires in a crownlike shape resulting from a plasma etching process of single crystal silicon. In the second experiment, we compared two different silicon doping levels [n-type (P), 1–10 and <0.005 Ω cm] for the same geometry. The best performance was achieved with lower doped silicon nanowire samples, emitting 2 mA at an extraction voltage of 1 kV. The geometry/material combination with the best performance was used to assemble an integrated electron source. These electron sources were measured in a triode configuration and reached onset voltages of about 125 V and emission currents of 2.5 mA at extraction voltages of 400 V, while achieving electron transmission rates as high as 85.0%.

1.
C.
Langer
et al.,
J. Vac. Sci. Technol. B
34
,
02G107
(
2016
).
2.
S.
Edler
et al.,
J. Appl. Phys.
122
,
124503
(
2017
).
3.
D.
Wu
et al.,
J. Mater. Chem. C
4
,
2079
(
2016
).
4.
M.
Bachmann
,
F.
Düsberg
,
A.
Pahlke
,
S.
Edler
,
A.
Schels
,
F.
Herdl
,
R.
Ławrowski
, and
R.
Schreiner
,
J. Vac. Sci. Technol. B
40
,
10605
(
2022
).
5.
Z.
Niu
,
IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)
, Cambridge, MA, 10–14 July 2023 (IEEE, Piscataway, NJ,
2023
), p.
180
.
6.
R.
Lawrowski
,
M.
Hausladen
,
P.
Buchner
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
68
,
4116
(
2021
).
7.
C.
Prommesberger
,
29th International Vacuum Nanoelectronics Conference (IVNC)
, Vancouver, 11–15 July 2016 (IEEE, Piscataway, NJ,
2016
), p.
1
.
8.
C.
Prommesberger
,
M.
Bachmann
,
F.
Dusberg
,
C.
Langer
,
R.
Lawrowski
,
M.
Hofmann
,
A.
Pahlke
, and
R.
Schreiner
,
IEEE Trans. Electron Devices
64
,
5128
(
2017
).
9.
M.
Zeng
,
Y.
Huang
,
Y.
Huang
,
J.
Chen
,
J.
She
, and
S.
Deng
,
IEEE Electron Device Lett.
43
,
466
(
2022
).
10.
D.
McClain
et al,
J. Phys. Chem. C
111
,
7514
(
2007
).
11.
D.
Biswas
and
R.
Rudra
,
Phys. Plasmas
25
,
83105
(
2018
).
12.
S. S.
Baturin
and
S. V.
Baryshev
,
Rev. Sci. Instrum.
88
,
33701
(
2017
).
13.
J.
Paulini
,
T.
Klein
, and
G.
Simon
,
J. Phys. D: Appl. Phys.
26
,
1310
(
1993
).
14.
F. M.
Charbonnier
,
R. W.
Strayer
,
L. W.
Swanson
, and
E. E.
Martin
,
Phys. Rev. Lett.
13
,
397
(
1964
).
15.
D.
Mofakhami
,
B.
Seznec
,
T.
Minea
,
R.
Landfried
,
P.
Testé
, and
P.
Dessante
,
Sci. Rep.
11
,
15182
(
2021
).
16.
R. G.
Forbes
,
Appl. Phys. Lett.
110
,
133109
(
2017
).
17.
S. B.
Cárceles
,
IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)
, Cambridge, MA, 10–14 July 2023 (IEEE, Piscataway, NJ,
2023
) p.
230
.
18.
A.
Schels
et al,
Micromachines
14
, 2008 (
2023
).
19.
P.
Buchner
,
IEEE 36th International Vacuum Nanoelectronics Conference (IVNC)
, Cambridge, MA, 10–14 July 2023 (IEEE, Piscataway, NJ,
2023
), p.
6
.
You do not currently have access to this content.