The adoption of vertically aligned carbon nanotubes (VACNTs) as electron emitters in x-ray generation has opened a new path for medical imaging technology advancement. With their outstanding electron emission capabilities, VACNTs provide a distinct advantage in miniaturizing and improving the performance of x-ray devices. This research focuses on the effect of electrical aging on x-ray imaging quality and the dose rate while using VACNTs as the electron source. The study includes a thorough examination of the electrical aging effects on VACNT-based x-ray systems, with an emphasis on changes in emission characteristics, beam stability, and the resulting variations in x-ray output. Experiment results show that electrical aging has a considerable impact on the performance of VACNT-based x-ray sources, with visible changes in electron emission parameters and subsequent consequences on x-ray imaging quality. Furthermore, the study investigates the relationship between electrical aging and the x-ray dose rate, providing vital insights into radiation exposure optimization in medical diagnostics.

1.
Q.
Zou
,
M. Z.
Wang
,
Y. G.
Li
, and
L. H.
Zou
,
J. Exp. Nanosci.
6
,
270
(
2011
).
2.
J. H.
Kim
,
J. S.
Kang
, and
K. C.
Park
,
Micromachines
9
,
648
(
2018
).
3.
R. J.
Parmee
,
C. M.
Collins
,
W. I.
Milne
, and
M. T.
Cole
,
Nano Convergence
2
,
1
(
2015
).
4.
A. L.
Koh
,
E.
Gidcumb
,
O.
Zhou
, and
R.
Sinclair
,
ACS Nano
7
,
2566
(
2013
).
5.
J. H.
Ryu
,
K. S.
Kim
,
C. S.
Lee
,
J.
Jang
, and
K. C.
Park
,
J. Vac. Sci. Technol. B
26
,
856
(
2008
).
6.
C.
Gong
et al,
Scanning
2018
, 6985698.
7.
A.
Nojeh
,
Int. Scholarly Res. Not.
2014
, 23.
8.
Y.
Zhang
,
X.
Liu
,
L.
Zhao
,
Y.
Li
, and
Z.
Li
,
Nanomaterials
13
,
50
(
2022
).
9.
C. T.
Badea
and
D.
Panetta
,
Compr. Biomed. Phys.
2
,
221
(
2014
).
10.
J.-W.
Xu
,
Z.-M.
Cui
,
Z.-Q.
Liu
,
F.
Xu
,
Y.-S.
Chen
, and
Y.-L.
Luo
,
Nanomaterials
9
,
1388
(
2019
).
11.
M.
Li
,
X.
Xia
,
S.
Meng
,
Y.
Ma
,
T.
Yang
,
Y.
Yang
, and
R.
Hu
,
RSC Adv.
11
,
6699
(
2021
).
12.
J.
Song
,
G. R.
Li
,
F. Y.
Xiong
, and
X. P.
Gao
,
J. Mater. Chem.
22
,
20580
(
2012
).
13.
J.
Deng
,
Z.
Ping
,
R.
Zheng
, and
G.
Cheng
,
J. Korean Phys. Soc.
58
,
897
(
2011
).
14.
J. S.
Kang
and
K. C.
Park
,
J. Vac. Sci. Technol., B
35
,
02C109
(
2017
).
15.
J. H.
Park
,
S. Y.
Jeon
,
P. S.
Alegaonkar
, and
J. B.
Yoo
,
Thin Solid Films
516
,
3618
(
2008
).
16.
Y.
Saito
,
K.
Seko
, and
J.
Kinoshita
,
Diam. Relat. Mater.
14
,
1843
(
2005
).
17.
B. C.
Adhikari
,
B.
Ketan
,
J. S.
Kim
,
S. T.
Yoo
,
E. H.
Choi
, and
K. C.
Park
,
Nanomaterials
12
,
4313
(
2022
).
18.
K.
Bhotkar
,
Y. Y.
Yu
,
J.
Sawant
,
R.
Patil
, and
K. C.
Park
,
J. Vac. Sci. Technol. B
41
, 023202 (
2023
).
19.
K. C.
Park
,
J. H.
Ryu
,
K. S.
Kim
,
Y. Y.
Yu
, and
J.
Jang
,
J. Vac. Sci. Technol., B
25
,
1261
(
2007
).
20.
J. H.
Ryu
,
N. Y.
Bae
,
H. M.
Oh
,
O.
Zhou
,
J.
Jang
, and
K. C.
Park
,
J. Vac. Sci. Technol., B
29
,
02B120
(
2011
).
21.
S.
Parveen
,
A.
Kumar
,
S.
Husain
, and
M.
Husain
,
Physica B
505
,
1
(
2017
).
22.
Y. Y.
Yu
and
K. C.
Park
,
J. Vac. Sci. Technol., B
40
,
22204
(
2022
).
23.
J. H.
Ryu
,
W. S.
Kim
,
S. H.
Lee
,
Y. J.
Eom
,
H. K.
Park
, and
K. C.
Park
,
J. Nanosci. Nanotechnol.
13
,
7100
(
2013
).
24.
J. H.
Ryu
,
J. S.
Kang
, and
K. C.
Park
,
Materials (Basel)
5
,
2353
(
2012
).
25.
S. H.
Lim
,
K. C.
Park
,
J. H.
Moon
,
H. S.
Yoon
,
D.
Pribat
,
Y.
Bonnassieux
, and
J.
Jang
,
Thin Solid Films
515
,
1380
(
2006
).
You do not currently have access to this content.