Most cubic semiconductors have threefold degenerate p-bonding valence bands and nondegenerate s-antibonding conduction bands. This allows strong interband transitions from the valence to the conduction bands. On the other hand, intervalence band transitions within p-bonding orbitals in conventional p-type semiconductors are forbidden at k = 0 and, therefore, weak, but observable. In gapless semiconductors, however, the s-antibonding band moves down between the split-off hole band and the valence band maximum due to the Darwin shift. This band arrangement makes them three-dimensional topological insulators. It also allows strong interband transitions from the s-antibonding valence band to the p-bonding bands, which have been observed in α-tin with Fourier-transform infrared spectroscopic ellipsometry [Carrasco et al., Appl. Phys. Lett. 113, 232104 (2018)]. This manuscript presents a theoretical description of such transitions applicable to many gapless semiconductors. This model is based on k p theory, degenerate carrier statistics, the excitonic Sommerfeld enhancement, and screening of the transitions by many-body effects. The impact of nonparabolic bands is approximated within Kane’s 8 × 8 k p -model by adjustments of the effective masses. This achieves agreement with experiments.

1.
I. M.
Tsidilkovski
,
Electron Spectrum of Gapless Semiconductors
(
Springer
,
Berlin
,
1997
).
2.
I. M.
Tsidilkovski
,
Gapless Semiconductors—A New Class of Materials
(
Akademie
,
Berlin
,
1988
).
3.
T.
Brudevoll
,
D. S.
Citrin
,
M.
Cardona
, and
N. E.
Christensen
,
Phys. Rev. B
48
,
8629
(
1993
).
4.
M.
Rohlfing
,
P.
Krüger
, and
J.
Pollmann
,
Phys. Rev. B
57
,
6485
(
1998
).
5.
S.
Küfner
,
J.
Furthmüller
,
L.
Matthes
, and
F.
Bechstedt
,
Nanotechnology
24
,
405702
(
2013
);
[PubMed]
S.
Küfner
,
J.
Furthmüller
,
L.
Matthes
, and
F.
Bechstedt
24
,
469501
(2013).
6.
S.
Küfner
,
J.
Furthmüller
,
L.
Matthes
,
M.
Fitzner
, and
F.
Bechstedt
,
Phys. Rev. B
87
,
235307
(
2013
).
7.
S.
Küfner
and
F.
Bechstedt
,
Phys. Rev. B
91
,
035311
(
2015
).
8.
U.
Middelmann
,
L.
Sorba
,
V.
Hinkel
, and
K.
Horn
,
Phys. Rev. B
35
,
718
(
1987
).
9.
R. A.
Carrasco
,
C. M.
Zamarripa
,
S.
Zollner
,
J.
Menéndez
,
S. A.
Chastang
,
J.
Duan
,
G. J.
Grzybowski
,
B. B.
Claflin
, and
A. M.
Kiefer
,
Appl. Phys. Lett.
113
,
232104
(
2018
).
10.
R. A.
Carrasco
,
S.
Zollner
,
S. A.
Chastang
,
J.
Duan
,
G. J.
Grzybowski
,
B. B.
Claflin
, and
A. M.
Kiefer
,
Appl. Phys. Lett.
114
,
062102
(
2019
).
11.
M. P.
Polak
,
P.
Scharoch
, and
R.
Kudrawiec
,
J. Phys. D: Appl. Phys.
50
,
195103
(
2017
).
12.
A.
Barfuss
et al.,
Phys. Rev. Lett.
111
,
157205
(
2013
); 112, 239903 (2014).
13.
H.
Huang
and
F.
Liu
,
Phys. Rev. B
95
,
201101
(
2017
).
14.
15.
W.
Kaiser
,
R. J.
Collins
, and
H. Y.
Fan
,
Phys. Rev.
91
,
1380
(
1953
).
17.
R.
Braunstein
,
J. Phys. Chem. Solids
8
,
280
(
1959
).
18.
R.
Braunstein
and
E. O.
Kane
,
J. Phys. Chem. Solids
23
,
1423
(
1962
).
19.
20.
S. H.
Groves
,
C. R.
Pidgeon
,
A. W.
Ewald
, and
R. J.
Wagner
,
J. Phys. Chem. Solids
31
,
2031
(
1970
).
21.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
(
Springer
,
Heidelberg
,
2010
).
22.
S.
Groves
and
W.
Paul
,
Phys. Rev. Lett.
11
,
194
(
1963
).
23.
C. A.
Hoffman
,
J. R.
Meyer
,
R. J.
Wagner
,
F. J.
Bartoli
,
M. A.
Engelhardt
, and
H.
Höchst
,
Phys. Rev. B
40
,
11693
(
1989
).
24.
C.
Tanguy
,
Phys. Rev. Lett.
75
,
4090
(
1995
) ; 76, 716 (1996).
25.
J.
Menéndez
,
C. D.
Poweleit
, and
S. E.
Tilton
,
Phys. Rev. B
101
,
195204
(
2020
).
27.
M. D.
Ulrich
,
W. F.
Seng
, and
P. A.
Barnes
,
J. Comp. Electron.
1
,
431
(
2002
).
29.
J. S.
Blakemore
,
Solid State Electron.
25
,
1067
(
1982
).
30.
R.
Kim
,
X.
Wang
, and
M.
Lundstrom
, “Notes on Fermi-Dirac integrals,” arXiv:0811.0116.
31.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Saunders
,
Fort Worth
,
1976
).
32.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken
,
2007
).
33.
C.
Xu
,
J.
Kouvetakis
, and
J.
Menéndez
,
J. Appl. Phys.
125
,
085704
(
2019
).
34.
G.
Dresselhaus
,
A. F.
Kip
, and
C.
Kittel
,
Phys. Rev.
98
,
368
(
1955
).
35.
36.
H.
Haug
and
S. W.
Koch
,
Quantum Theory of the Optical and Electronic Properties of Semiconductors
(
World Scientific
,
Singapore
,
2004
).
37.
L.
Bányai
and
S. W.
Koch
,
Z. Phys. B
63
,
283
(
1986
).
38.
L.
Pavesi
,
J. L.
Staehli
, and
V.
Capozzi
,
J. Phys. C
21
,
1485
(
1988
).
40.
C.
Emminger
,
F.
Abadizaman
,
N. S.
Samarasingha
,
T.
Tiwald
, and
S.
Zollner
,
J. Vac. Sci. Technol. B
38
,
012202
(
2020
).
41.
V.
Lucarini
,
K.-E.
Peiponen
,
J. J.
Saarinen
, and
E. M.
Vartiainen
,
Kramers-Kronig Relations in Optical Materials Research
(
Springer
,
Heidelberg
,
2005
).
42.
M.
Rivero Arias
,
C. A.
Armenta
,
C.
Emminger
,
C. M.
Zamarripa
,
N. S.
Samarasingha
,
J. R.
Love
,
S.
Yadav
, and
S.
Zollner
,
J. Vac. Sci. Technol. B
41
,
022203
(
2023
).
43.
See the supplementary material online for MATLAB scripts to perform the calculations presented here.

Supplementary Material

You do not currently have access to this content.