Polymeric residues and films of various thicknesses on the wafer backside and the edge frontside bevel and backside are known to cause substantial yield losses. An additional ex situ bevel etch step can clear away these buildups from the edge bevel area but not from the wafer backside. In this paper, we demonstrate a novel and innovative in situ pin-up plasma clean step that can effectively remove polymers from both the wafer backside and the edge bevel areas, eliminating the need for the bevel etch step. A physical analysis of blanket test wafers and patterned product wafers that have underwent the pin-up clean step in inductively coupled plasma and capacitively coupled plasma etch systems reveals that the pin-up clean step can reduce defect counts on product wafers and improve manufacturing cycle time and throughput by relaxing the queue time constraint.

1.
T.
Murata
,
M.
Sato
, and
T.
Goto
, “Reduction of wafer edge induced defect by WEE optimization,” in 2007 International Symposium on Semiconductor Manufacturing (IEEE, Santa Clara, CA, 2007), pp. 1–3.
2.
K.
Jami
,
S.
Vedula
, and
G.
Blumenstock
,
Solid State Technol.
52
,
10+
(
2009
), Sec. 10.
3.
R.
Van Roijen
et al. ,
IEEE Trans. Semicond. Manuf.
26
,
35
(
2013
).
4.
C.
Zhang
,
Q.
He
, and
H.
Zhang
, “Bevel etch methods for BEOL peeling defect reduction,” in 2015 China Semiconductor Technology International Conference (IEEE, Shanghai, 2015), pp. 1–3.
5.
S.-Y.
Chang
,
C.-Y.
Lung
,
A. C.
Wei
,
H.-J.
Lee
,
N.-T.
Lian
,
T.
Yang
,
K.-C.
Chen
, and
C.-Y.
Lu
, “Methods of removing solvent-like residues from wafer backside bevel,” in ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference (IEEE, Saratoga Springs, NY, 2013), pp. 291–294.
6.
Y.
Ogawa
,
H.
Nagashima
,
Y.
Yoshimizu
,
H.
Tomita
,
T.
Kishimoto
,
K.
Miya
, and
A.
Izumi
, “Fine edge and bevel film stripping process by novel wet cleaning tool beyond 45 nm node,” in 2007 International Symposium on Semiconductor Manufacturing (IEEE, Santa Clara, CA, 2007), pp. 1–4.
7.
X.
Yuan
,
Q.
Zhang
, and
J.
Hao
, “Wafer edge treatment in lithographic process for peeling defect reduction,” in 2017 China Semiconductor Technology International Conference (CSTIC) (IEEE, Shanghai, 2017), pp. 1–4.
8.
C.
Bunke
,
T. F.
Houghton
,
K.
Bandy
,
G.
Stojakovic
, and
G.
Fang
,
IEEE Trans. Semicond. Manuf.
26
,
442
(
2013
).
9.
Proceedings / ICPT, International Conference on Planarization/CMP Technology: October 25–27, 2007, Dresden, Germany, edited by G. Zwicker and M.-U. F. Gesellschaft Mikroelektronik (VDE-Verl, Berlin, 2007) meeting Name: ICPT.
10.
J. W.
Choi
,
L. G.
Ong
,
H. Y.
Li
,
S. W.
Kim
,
G. H.
Hwang
,
S. L. H.
Jang
,
R.
Murthy
, and
E. T. S.
Kiat
,
IEEE Trans. Compon. Packaging Manuf. Technol.
3
,
1820
(
2013
).
11.
S.
Tran
,
W. Y.
Ng
,
M.
Johnson
,
D.
Kewley
,
V.
Subramony
,
S.
Veeraraghavan
,
M.
Chang
, and
J. K.
Sinha
, “Process induced Wafer Geometry impact on center and edge lithography performance for sub 2X nm nodes,” in 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (IEEE, Saratoga Springs, NY, 2015), pp. 345–350.
12.
R.
Charavel
,
J.
Roig
,
E.
Altamirano-Sanchez
,
J.
Van Aelst
,
K.
Devriendt
,
K.
Van Wichelen
,
P.
Gassot
,
P.
Coppens
, and
E.
De Backer
,
IEEE Trans. Semicond. Manuf.
24
,
358
(
2011
).
13.
M.
Boumerzoug
, “Optimized BARC films and etch byproduct removal for wafer edge defectivity reduction,” in 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014) (IEEE, Saratoga Springs, NY, 2014), pp. 330–333.
14.
K.
Nojiri
,
Dry Etching Technology for Semiconductors
(
Springer International
,
Cham
,
2015
).
15.
M.
Sugawara
,
B. L.
Stansficld
,
S.
Handa
,
K.
Fujita
,
S.
Watanabe
, and
T.
Tsukamoto
,
Plasma Etching Fundamentals and Applications
(
Oxford University
,
Oxford
,
1998
).
16.
A.
Carlson
and
T.
Le
, “Correlation of wafer backside defects to photolithography hot spots using advanced macro inspection,”
Proc. SPIE
6152
, 61523E (2006).
You do not currently have access to this content.