Optical properties of two-dimensional bilayer silicon have been explored at midinfrared wavelengths using density functional theory. In this work, progressive atomic structural deformation and the resultant variations in the optical properties of the bilayer silicon films were investigated under external in-plane strain. A phase transformation of the atomic structure has been observed at an applied in-plane tensile strain of 5.17%, at which the atomic lattice is changed from a low buckled to a buckle-free honeycomb structure. Evaluations of the optical properties were carried out by taking into account the inter- and intraband transitions. An abrupt change in the optical refraction index was observed at the phase transition. In addition, the buckle-free honeycomb structure presents a strain-resistive absorption edge pinned at 1.14 μm wavelength. Exceeding a strain threshold of 12.26% results in the development of both direct- and indirect-energy bandgap openings. The direct bandgap induced interband optical transitions, resulting in absorption peaks at midinfrared wavelengths and a drastic increase in the refraction index. Moreover, by adjusting the strain, the optical absorptions can be tuned in a wide range of wavelength at midinfrared from 1.5 to 11.5 μm.

1.
M.
Hochberg
and
T.
Baehr-Jones
,
Nat. Photonics
4
,
492
(
2010
).
3.
K.
Ohashi
et al, in
2007 IEEE International Electron Devices Meeting
, Washington, DC, 10–12 December 2007 (
IEEE
,
New York
,
2007
), pp.
787
790
.
4.
Y.
Liu
,
S.
Wang
,
J.
Wang
,
X.
Li
,
M.
Yu
, and
Y.
Cai
,
Nano Commun. Networks
31
,
100379
(
2022
).
5.
A.
Spott
,
E. J.
Stanton
,
N.
Volet
,
J. D.
Peters
,
J. R.
Meyer
, and
J. E.
Bowers
,
IEEE J. Sel. Top. Quantum Electron.
23
,
1
(
2017
).
6.
A.
Rogalski
,
P.
Martyniuk
,
M.
Kopytko
,
P.
Madejczyk
, and
S.
Krishna
,
Sensors
20
,
7047
(
2020
).
8.
S.
Mauthe
,
Y.
Baumgartner
,
M.
Sousa
,
Q.
Ding
,
M. D.
Rossell
,
A.
Schenk
,
L.
Czornomaz
, and
K. E.
Moselund
,
Nat. Commun.
11
,
4565
(
2020
).
9.
D. O.
Alshahrani
,
M.
Kesaria
,
E. A.
Anyebe
,
V.
Srivastava
, and
D. L.
Huffaker
,
Adv. Photonics Res.
3
,
2100094
(
2022
).
10.
Y.
Xue
,
Y.
Han
,
Y.
Tong
,
Z.
Yan
,
Y.
Wang
,
Z.
Zhang
,
H. K.
Tsang
, and
K. M.
Lau
,
Optica
8
,
1204
(
2021
).
11.
C.
Zeng
,
D.
Fu
,
Y.
Jin
, and
Y.
Han
,
Photonics
10
,
573
(
2023
).
12.
J. Y.
Lee
,
D.
Figer
,
E.
Corrales
,
J.
Getty
, and
L.
Mears
, in
High Energy, Optical, and Infrared Detectors for Astronomy VIII
, edited by
A. D.
Holland
and
J.
Beletic
(
SPIE
, Bellingham, WA,
2018
), p.
83
.
13.
N. R.
Glavin
,
R.
Rao
,
V.
Varshney
,
E.
Bianco
,
A.
Apte
,
A.
Roy
,
E.
Ringe
, and
P. M.
Ajayan
,
Adv. Mater.
32
, 1904302 (
2020
).
14.
Y.
Zhao
,
M.
Gobbi
,
L. E.
Hueso
, and
P.
Samorì
,
Chem. Rev.
122
,
50
(
2022
).
15.
Q.
Qiu
and
Z.
Huang
,
Adv. Mater.
33
, 2008126 (
2021
).
16.
A.
Rogalsk
,
M.
Kopytko
, and
P.
Martyniuk
,
Opto-Electron. Rev.
6
, 021316 (2019).
17.
M.
Long
,
P.
Wang
,
H.
Fang
, and
W.
Hu
,
Adv. Funct. Mater.
29
,
1803807
(
2019
).
19.
20.
S.
Liang
,
B.
Cheng
,
X.
Cui
, and
F.
Miao
,
Adv. Mater.
32
, 1903800 (
2020
).
21.
W.
Liao
,
Y.
Huang
,
H.
Wang
, and
H.
Zhang
,
Appl. Mater. Today
16
,
435
(
2019
).
22.
Y.
Liu
,
Y.
Huang
, and
X.
Duan
,
Nature
567
,
323
(
2019
).
23.
X.
Zhou
et al,
Adv. Funct. Mater.
28
, 1706587 (
2018
).
24.
K. S.
Novoselov
,
A.
Mishchenko
,
A.
Carvalho
, and
A. H.
Castro Neto
,
Science
353
, aac9439 (
2016
).
25.
A. K.
Geim
and
I. V.
Grigorieva
,
Nature
499
,
419
(
2013
).
26.
X.
Duan
,
C.
Wang
,
A.
Pan
,
R.
Yu
, and
X.
Duan
,
Chem. Soc. Rev.
44
,
8859
(
2015
).
27.
M.
Long
et al,
ACS Nano
13
, 2511 (
2019
).
28.
29.
W.
Yan
,
V. R.
Shresha
,
Q.
Jeangros
,
N. S.
Azar
,
S.
Balendhran
,
C.
Ballif
,
K.
Crozier
, and
J.
Bullock
,
ACS Nano
14
,
13645
(
2020
).
30.
Z.
Wang
,
X.
Zhang
,
D.
Wu
,
J.
Guo
,
Z.
Zhao
,
Z.
Shi
,
Y.
Tian
,
X.
Huang
, and
X.
Li
,
J. Mater. Chem. C
8
,
6877
(
2020
).
31.
Q.
Liang
et al,
Adv. Mater.
31
, 1807609 (
2019
).
32.
L.
Zeng
,
D.
Wu
,
J.
Jie
,
X.
Ren
,
X.
Hu
,
S. P.
Lau
,
Y.
Chai
, and
Y. H.
Tsang
,
Adv. Mater.
32
, 2004412 (
2020
).
33.
C.
Yin
et al,
Adv. Mater.
32
, 2002237 (
2020
).
34.
Z.
Wang
et al,
Adv. Funct. Mater.
30
, 1907945 (
2020
).
36.
M. L.
Lee
,
E. A.
Fitzgerald
,
M. T.
Bulsara
,
M. T.
Currie
, and
A.
Lochtefeld
,
J. Appl. Phys.
97
, 011101 (
2005
).
37.
S.
Fregonese
,
Yan
Zhuang
, and
J. N.
Burghartz
,
IEEE Trans. Electron Devices
54
,
2321
(
2007
).
38.
S.
Frégonèse
,
Y.
Zhuang
, and
J. N.
Burghartz
,
Solid State Electron.
52
,
919
(
2008
).
39.
C.
Grazianetti
and
A.
Molle
,
Research
2019
, 8494606.
40.
J.
Du
,
H.
Yu
,
B.
Liu
,
M.
Hong
,
Q.
Liao
,
Z.
Zhang
, and
Y.
Zhang
,
Small Methods
5
, 200919 (
2021
).
41.
C.
Lian
and
J.
Ni
,
AIP Adv.
3
,
052102
(
2013
).
42.
Z.
Ji
,
R.
Zhou
,
L. C.
Lew Yan Voon
, and
Y.
Zhuang
,
J. Electron. Mater.
45
,
5040
(
2016
).
43.
J. P.
Perdew
,
S.
Kurth
,
A.
Zupan
, and
P.
Blaha
,
Phys. Rev. Lett.
82
,
2544
(
1999
).
44.
M.
Gmitra
and
J.
Fabian
,
Phys. Rev. B
94
,
165202
(
2016
).
45.
B.
Schaefer
,
S.
Alireza Ghasemi
,
S.
Roy
, and
S.
Goedecker
,
J. Chem. Phys.
142
, 034112 (
2015
).
46.
M. P.
Desjarlais
,
Contrib. Plasma Phys.
45
,
300
(
2005
).
47.
F.
Tran
and
P.
Blaha
,
Phys. Rev. Lett.
102
,
226401
(
2009
).
48.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
49.
V. K.
Dien
,
W. B.
Li
,
K.
Lin
,
N. T.
Han
, and
M.
Lin
,
RSC Adv.
12
,
34851
(
2022
).
50.
H.
Liu
,
N.
Han
, and
J.
Zhao
,
J. Phys.: Condens. Matter.
26
,
475303
(
2014
).
51.
P.
Shih
,
T.
Do
,
G.
Gumbs
,
D.
Huang
,
H. D.
Pham
, and
M.
Lin
,
Sci. Rep.
9
,
14799
(
2019
).
52.
L.
Masson
and
G.
Prévot
,
Nanoscale Adv.
5
,
1574
(
2023
).
54.
G.
Li
et al,
Adv. Mater.
30
, 1804650 (
2018
).
55.
M.
De Crescenzi
,
I.
Berbezier
,
M.
Scarselli
,
P.
Castrucci
,
M.
Abbarchi
,
A.
Ronda
,
F.
Jardali
,
J.
Park
, and
H.
Vach
,
ACS Nano
10
,
11163
(
2016
).
56.
D.
Nazzari
et al,
J. Phys. Chem. C
125
,
9973
(
2021
).
57.
M.
Bian
et al,
Adv. Mater.
34
,
2200117
(
2022
).
58.
K.
Vishal
,
Z. H.
Ji
, and
Y.
Zhuang
,
J. Vac. Sci. Technol. A
41
,
022201
(
2023
).
You do not currently have access to this content.