A novel manufacturing method using the side mask and tilted reactive ion beam etching (RIBE) is proposed for the fabrication of blazed gratings. Electron beam lithography was carried out to pattern a groove with a nanoscale line width, and then appropriate mask materials were filled into the SiO2 trench by atomic layer deposition. After being etched by RIBE at specific tilted angles, the required blazed gratings were achieved. In contrast to the typical fabrication process with a patterned mask on top of the surface to be etched, V-shaped nano structures filled into the trenches were used as the side mask. During etching, the surface material located in the shadow of the side mask along incident ion beams was not etched. The depth and blazed angle of blazed gratings are determined by the height of the side mask and the mounting angle of the sample, respectively. In addition, the fabricated blazed gratings can be used as imprinting moulds to duplicate blazed gratings for augmented reality applications. Due to more options for side mask materials, this method is able to provide high repeatability and accurate controllability for fabricating blazed gratings.

1.
C.
Sun
,
M.
Wang
,
J.
Cui
,
X.
Yao
, and
J.
Chen
,
Results Phys.
12
,
143
(
2019
).
2.
3.
D.
Lin
,
P.
Fan
,
E.
Hasman
, and
M. L.
Brongersma
,
Science
345
,
298
(
2014
).
4.
D. L.
Voronov
,
E. M.
Gullikson
, and
H. A.
Padmore
,
Opt. Express
26
,
22011
(
2018
).
5.
J. C.
Piao
and
S. D.
Kim
,
IEEE Trans. Multimedia
21
,
2827
(
2019
).
6.
K.
Yin
,
H. Y.
Lin
, and
S. T.
Wu
,
J. Soc. Inf. Disp.
28
,
368
(
2020
).
7.
V.
Drazic
et al,
Opt. Express
30
,
1293
(
2022
).
8.
R. W.
Wood
,
London, Edinburgh Dublin Philos. Mag. J. Sci.
20
,
770
(
1910
).
9.
G. R.
Harrison
,
J. Opt. Soc. Am.
39
,
413
(
1949
).
10.
G. R.
Harrison
,
S. W.
Thompson
,
H.
Kazukonis
, and
J. R.
Connell
,
J. Opt. Soc. Am.
62
,
751
(
1972
).
11.
W. T.
Tsang
and
S.
Wang
,
J. Appl. Phys.
46
,
2163
(
1975
).
12.
A. E.
Franke
,
M. L.
Schattenburg
,
E. M.
Gullikson
,
J.
Cottam
,
S. M.
Kahn
, and
A.
Rasmussen
,
J. Vac. Sci. Technol. B
15
,
2940
(
1997
).
13.
Y.
Aoyagi
and
N.
Susumu
,
Opt. Acta Int. J. Opt.
23
,
701
(
1976
).
14.
P. G.
Glöersen
,
J. Vac. Sci. Technol.
12
,
28
(
1975
).
15.
S.
Matsui
,
T.
Yamato
,
H.
Aritome
, and
S.
Namba
,
Jpn. J. Appl. Phys.
19
,
L276
(
1980
).
16.
J. D.
Chinn
,
I.
Adesida
, and
E. D.
Wolf
,
Appl. Phys. Lett.
43
,
185
(
1983
).
17.
M. A.
Carter
and
G. F.
Goldspink
,
Vacuum
38
,
5
(
1988
).
18.
E.
Collard
,
C.
Lejeune
,
J. P.
Grandchamp
,
J. P.
Gilles
, and
P.
Scheiblin
,
Thin Solid Films
193–194
,
100
(
1990
).
19.
J. M. E.
Harper
,
J. J.
Cuomo
,
P. A.
Leary
,
G. M.
Summa
,
H. R.
Kaufman
, and
F. J.
Bresnock
,
J. Electrochem. Soc.
128
,
1077
(
1981
).
20.
B. A.
Heath
,
J. Electrochem. Soc.
129
,
396
(
1982
).
21.
V. J.
Einck
,
M.
Torfeh
,
A.
McClung
,
D. E.
Jung
,
M.
Mansouree
,
A.
Arbabi
, and
J. J.
Watkins
,
ACS Photonics
8
,
2400
(
2021
).
22.
P.
Xie
,
Z.
Chen
,
J.
Xu
,
D.
Xie
,
X.
Wang
,
S.
Cui
,
H.
Zhou
,
D.
Zhang
, and
T.
Fan
,
J. Am. Ceram. Soc.
102
,
4678
(
2019
).
You do not currently have access to this content.