Polished Cd0.9Zn0.1Te (CZT) single crystals have been exposed to dilute H2S in nitrogen at temperatures from 200 to 280 °C in order to produce a sulfide layer on the surface. The composition of the CZT surfaces before and after H2S exposure has been investigated by photoemission, x-ray absorption, cross-sectional SEM, and spectroscopic ellipsometry. At the highest temperature, H2S exposure removes surface oxides and depletes Te, leaving a CdS surface layer. CdS layers 60 nm thick have been grown with a 2 h exposure to H2S at 280 °C. Surfaces that are initially oxidized through ozone exposure are much more reactive with H2S than unintentionally oxidized surfaces.

1.
B.
Thomas
,
M. C.
Veale
,
M. D.
Wilson
,
P.
Seller
,
A.
Schneider
, and
K.
Iniewski
,
J. Instrum.
12
,
C12045
(
2017
).
2.
O.
Baussens
,
C.
Ponchut
,
M.
Ruat
,
M.
Bettelli
,
B.
Zanettini
, and
A.
Zappatini
, “
Characterization of high-flux CdZnTe with optimized electrodes for 4th generation synchrotrons
,” in
23rd International Workshop on Radiation Imaging Detectors
, Riva del Garda, Italy, June 26, 2022 (IOP, Bristol, UK,
2022
).
4.
R.
Ballabriga
et al,
IEEE Trans. Radiat. Plasma Med. Sci.
5
,
422
(
2021
).
5.
R. S.
Kapadnis
,
S. B.
Bansode
,
A. T.
Supekar
,
P. K.
Bhujpal
,
S. S.
Kale
,
S. K.
Jadkar
, and
H. M.
Pathan
,
ES Energy Environ.
10
,
3
(
2020
).
6.
Y.-H.
Li
,
A.
Walsh
,
S.
Chen
,
W.-J.
Yin
,
J.-H.
Yang
,
J.
Li
,
J. L. F.
Da Silva
,
X. G.
Gong
, and
S.-H.
Wei
,
Appl. Phys. Lett.
94
,
212109
(
2009
).
7.
N.
Romeo
,
A.
Bosio
,
D.
Menossi
,
A.
Romeo
, and
M.
Aramini
,
Energy Proc.
57
,
65
(
2014
).
8.
P.
Boieriu
,
R.
Sporken
,
Y.
Xin
,
N. D.
Browning
, and
S.
Sivananthan
,
J. Electron. Mater.
29
,
718
(
2000
).
9.
L.
Ma
,
W.
Liu
,
H.
Cai
,
F.
Zhang
, and
X.
Wu
,
Sci. Rep.
6
,
38858
(
2016
).
10.
A. J.
Nelson
and
D.
Levi
,
J. Vac. Sci. Technol. A
15
,
1119
(
1997
).
11.
I.
Maloka
,
S.
Aliwi
, and
S.
Naman
,
Pet. Sci. Technol.
24
,
103
(
2006
).
12.
Airgas
, see www.airgas.com/msds/001029.pdf for “Safety Data Sheet Hydrogen Sulfide.”
13.
I. M.
Kotina
,
L. M.
Tukhkonen
,
G. V.
Patsekina
,
A. V.
Shchukarev
, and
G. M.
Gusinskii
,
Semicond. Sci. Technol.
13
,
890
(
1998
).
14.
A. S.
Tarasov
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
R. V.
Menshhikov
,
I. N.
Uzhakov
,
A. S.
Kozhukhov
,
E. V.
Fedosenko
, and
O. E.
Tereshhenko
,
Semiconductors
55
,
S62
(
2021
).
15.
See https://srdata.nist.gov/xps/Default.aspx for “NIST X-ray Photoelectron Spectroscopy Database.”
16.
H. F.
Garces
,
H. M.
Galindo
,
L. J.
Garces
,
J.
Hunt
,
A.
Morey
, and
S. L.
Suib
,
Microporous Mesoporous Mater.
127
,
190
(
2010
).
17.
H.
Shinotsuka
,
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
51
,
427
(
2019
).
You do not currently have access to this content.