The epitaxial development and characterization of metamorphic “GaSb-on-silicon” buffers as substrates for antimonide devices is presented. The approach involves the growth of a spontaneously and fully relaxed GaSb metamorphic buffer in a primary epitaxial reactor, and use of the resulting “GaSb-on-silicon” wafer to grow subsequent layers in a secondary epitaxial reactor. The buffer growth involves four steps—silicon substrate preparation for oxide removal, nucleation of AlSb on silicon, growth of the GaSb buffer, and finally capping of the buffer to prevent oxidation. This approach on miscut silicon substrates leads to a buffer with negligible antiphase domain density. The growth of this buffer is based on inducing interfacial misfit dislocations between an AlSb nucleation layer and the underlying silicon substrate, which results in a fully relaxed GaSb buffer. A 1 μm thick GaSb layer buffer grown on silicon has ∼9.2 × 107dislocations/cm2. The complete lack of strain in the epitaxial structure allows subsequent growths to be accurately lattice matched, thus making the approach ideal for use as a substrate. We characterize the GaSb-on-silicon wafer using high-resolution x-ray diffraction and transmission electron microscopy. The concept’s feasibility is demonstrated by growing interband cascade light emitting devices on the GaSb-on-silicon wafer. The performance of the resulting LEDs on silicon approaches that of counterparts grown lattice matched on GaSb.

2.
A.
Aiello
,
D.
Das
, and
P.
Bhattacharya
,
ACS Appl. Nano Mater.
4
,
1825
(
2021
).
4.
H.
Larocque
et al, ArXiv [Physics Optics] (
2023
).
6.
J.-H.
Kim
,
S.
Aghaeimeibodi
,
C. J. K.
Richardson
,
R. P.
Leavitt
,
D.
Englund
, and
E.
Waks
,
Nano Lett.
17
,
7394
(
2017
).
7.
N.
Margalit
,
C.
Xiang
,
S. M.
Bowers
,
A.
Bjorlin
,
R.
Blum
, and
J. E.
Bowers
,
Appl. Phys. Lett.
118
,
220501
(
2021
).
8.
Z.
Loghmari
,
J.-B.
Rodriguez
,
A. N.
Baranov
,
M.
Rio-Calvo
,
L.
Cerutti
,
A.
Meguekam
,
M.
Bahriz
,
R.
Teissier
, and
E.
Tournié
,
APL Photonics
5
,
041302
(
2020
).
9.
K. D.
Maranowski
et al,
J. Electron. Mater.
30
,
619
(
2001
).
10.
D. C.
Bobela
,
L.
Gedvilas
,
M.
Woodhouse
,
K. A. W.
Horowitz
, and
P. A.
Basore
,
Prog. Photovoltaics Res. Appl.
25
,
41
(
2017
).
11.
S.
Manda
et al, in
2019 IEEE International Electron Devices Meeting (IEDM)
, San Francisco, CA, 7–11 December 2019 (
IEEE
,
New York
,
2019
), pp.
16
17
.
12.
13.
J. R.
Meyer
,
A.
Spott
,
C. S.
Kim
,
M.
Kim
,
C. L.
Canedy
,
C. D.
Merritt
,
W. W.
Bewley
, and
I.
Vurgaftman
, U. S. patent application 18 (
2023
).
14.
J. C. C.
Fan
and
J. M.
Poate
, in
MRS Proceedings Heteroepitaxy on Silicon: Volume 67
, Pittsburgh, PA (
Materials Research Society
, Warrendale, PA,
1986
).
15.
J. C. C.
Fan
,
J. M.
Phillips
, and
B.-Y.
Tsaur
, in
MRS Proceedings Heteroepitaxy on Silicon II: Volume 91
, 5 October 1987 (
Materials Research Society
, Warrendale, PA,
1987
).
16.
R. J.
Malik
,
J. P.
Van Der Ziel
,
B. F.
Levine
,
C. G.
Bethea
, and
J.
Walker
,
J. Appl. Phys.
59
,
3909
(
1986
).
17.
J.
van der Ziel
,
R.
Malik
,
J.
Walker
, and
R.
Mikulyak
,
IEEE J. Quantum Electron.
22
,
1587
(
1986
).
18.
A.
Remis
,
L.
Monge
,
G.
Boissier
,
J.-B.
Rodriguez
,
L.
Cerutti
, and
E.
Tournié
, in
Novel In-Plane Semiconductor Lasers XXI
, San Francisco, CA, edited by
A. A.
Belyanin
and
P. M.
Smowton
(
SPIE
, Bellingham, WA,
2022
).
19.
D. L.
Huffaker
,
G.
Balakrishnan
,
A.
Jallipalli
,
M. N.
Kutty
,
J.
Tatebayashi
,
S. H.
Huang
,
L. R.
Dawson
,
Z.
Mi
, and
P.
Bhattacharya
, in 2007 International Nano-Optoelectronics Workshop, Beijing, China (
2007
).
20.
A.
Jallipalli
et al,
Electron. Lett.
43
,
1198
(
2007
).
21.
J.
Tatebayashi
,
A.
Jallipalli
,
M. N.
Kutty
,
S.
Huang
,
K.
Nunna
,
G.
Balakrishnan
,
L. R.
Dawson
, and
D. L.
Huffaker
,
IEEE J. Sel. Top. Quantum Electron.
15
,
716
(
2009
).
22.
J. B.
Rodriguez
,
L.
Cerutti
,
G.
Patriarche
,
L.
Largeau
,
K.
Madiomanana
, and
E.
Tournié
,
J. Cryst. Growth
477
,
65
(
2017
).
23.
L.
Cerutti
,
D. A.
Díaz Thomas
,
J.-B.
Rodriguez
,
M.
Rio Calvo
,
G.
Patriarche
,
A. N.
Baranov
, and
E.
Tournié
,
Optica
8
,
1397
(
2021
).
24.
S. M.
Ting
and
E.
Fitzgerald
,
J. Appl. Phys.
87
,
2618
(
2000
).
25.
S.
Strite
,
D.
Biswas
,
N. S.
Kumar
,
M.
Fradkin
, and
H.
Morkoc
,
Appl. Phys. Lett.
56
,
244
(
1990
).
26.
E.
Plis
,
J. B.
Rodriguez
,
G.
Balakrishnan
,
Y. D.
Sharma
,
H. S.
Kim
,
T.
Rotter
, and
S.
Krishna
,
Semicond. Sci. Technol.
25
,
085010
(
2010
).
27.
R.
People
and
J. C.
Bean
,
Appl. Phys. Lett.
47
,
322
(
1985
).
28.
J. W.
Matthews
,
A. E.
Blakeslee
, and
S.
Mader
,
Thin Solid Films
33
,
253
(
1976
).
29.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
30.
W.
Qian
,
M.
Skowronski
, and
R.
Kaspi
,
J. Electrochem. Soc.
144
,
1430
(
1997
).
31.
C. L.
Canedy
et al,
Opt. Express
29
,
35426
(
2021
).
32.
G.
Balakrishnan
,
S.
Huang
,
L. R.
Dawson
,
Y.-C.
Xin
,
P.
Conlin
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
86
,
034105
(
2005
).
34.
D.
Benyahia
,
Ł
Kubiszyn
,
K.
Michalczewski
,
A.
Kębłowski
,
P.
Martyniuk
,
J.
Piotrowski
, and
A.
Rogalski
,
J. Electron. Mater.
47
,
299
(
2018
).
35.
A.
Authier
,
X-Ray and Neutron Dynamical Diffraction
(
Springer US
,
Boston
,
MA
,
1996
), pp.
1
31
.
36.
M.
Frentrup
,
L. Y.
Lee
,
S.-L.
Sahonta
,
M. J.
Kappers
,
F.
Massabuau
,
P.
Gupta
,
R. A.
Oliver
,
C. J.
Humphreys
, and
D. J.
Wallis
,
J. Phys. D: Appl. Phys.
50
,
433002
(
2017
).
37.
F. F.
Ince
,
M.
Frost
,
S.
Seth
,
D.
Shima
,
T. J.
Rotter
, and
G.
Balakrishnan
,
J. Vac. Sci. Technol. A
41
, 052704 (
2023
).
38.
M.
Polat
,
O.
Arı
,
O.
Öztürk
, and
Y.
Selamet
,
Mater. Res. Express
4
,
035904
(
2017
).
39.
M. A.
Moram
and
M. E.
Vickers
,
Rep. Prog. Phys.
72
,
036502
(
2009
).
40.
C. S.
Kim
,
W. W.
Bewley
,
C. D.
Merritt
,
C. L.
Canedy
,
M. V.
Warren
,
I.
Vurgaftman
,
J. R.
Meyer
, and
M.
Kim
,
Organ. Ethic.
57
,
011002
(
2017
).
You do not currently have access to this content.