Periodic nanostructures have important applications in nanophotonics and nanostructured materials as they provide various properties that are advantageous compared to conventional solid materials. However, there is a lack of metrology techniques that are suitable for large-scale manufacturing, as the traditional tools used in nanotechnology have limited throughput and depth resolution. In this work, we use spectroscopic scatterometry as a fast and low-cost alternative to characterize the porosity of three-dimensional (3D) periodic nanostructures. In this technique, the broadband reflectance of the structure is measured and fitted with physical models to predict the structure porosity. The process is demonstrated using 3D periodic nanostructures fabricated using colloidal phase lithography at various exposure dosages. The measured reflectance data are compared with an optical model based on finite-difference time-domain and transfer-matrix methods, which show qualitative agreement with the structure porosity. We found that this technique has the potential to further develop into an effective method to effectively predict the porosity of 3D nanostructures and can lead to real-time process control in roll-to-roll nanomanufacturing.

2.
E.
Yablonovitch
and
T. J.
Gmitter
,
Phys. Rev. Lett.
63
,
1950
(
1989
).
3.
M.
Qi
,
E.
Lidorikis
,
P. T.
Rakich
,
S. G.
Johnson
,
J. D.
Joannopoulos
,
E. P.
Ippen
, and
H. I.
Smith
,
Nature
429
,
538
(
2004
).
4.
5.
X. A.
Zhang
,
A.
Bagal
,
E. C.
Dandley
,
J.
Zhao
,
C. J.
Oldham
,
B.-I.
Wu
,
G. N.
Parsons
, and
C.-H.
Chang
,
Adv. Funct. Mater.
25
,
6644
(
2015
).
6.
I.
Chen
,
Z.
Dai
,
D. T.
Lee
,
Y.
Chen
,
G. N.
Parsons
, and
C.
Chang
,
Adv. Mater. Interfaces
8
,
2100690
(
2021
).
7.
T. A.
Schaedler
,
A. J.
Jacobsen
,
A.
Torrents
,
A. E.
Sorensen
,
J.
Lian
,
J. R.
Greer
,
L.
Valdevit
, and
W. B.
Carter
,
Science
334
,
962
, (
2011
).
9.
N. G.
Dou
,
R. A.
Jagt
,
C. M.
Portela
,
J. R.
Greer
, and
A. J.
Minnich
,
Nano Lett.
18
,
4755
(
2018
).
10.
H.
Zhang
,
X.
Yu
, and
P. V.
Braun
,
Nat. Nanotechnol.
6
,
277
(
2011
).
11.
A. C.
Diebold
,
Handbook of Silicon Semiconductor Metrology
(
Marcel Dekker, Inc.
, New York,
2001
).
12.
N. G.
Orji
et al,
Nat. Electron.
1
,
532
(
2018
).
13.
Z.
Ma
and
D. G.
Seiler
,
Metrology and Diagnostic Techniques for Nanoelectronics
(
Jenny Stanford
, Singapore,
2017
).
14.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
15.
R.
Dixson
and
N. G.
Orji
,
Proc. SPIE
6518
,
651816
(
2007
).
16.
L. G.
Connolly
,
T.-F.
Yao
,
A.
Chang
, and
M.
Cullinan
,
Precis. Eng.
57
,
137
(
2019
).
17.
T.-F.
Yao
,
L. G.
Connolly
, and
M.
Cullinan
,
J. Micro/Nanolithogr., MEMS, MOEMS
18
,
1
(
2019
).
18.
A. C.
Diebold
,
J. Vac. Sci. Technol. A
31
,
050804
(
2013
).
19.
I. W.
Hamley
,
Small-Angle Scattering: Theory, Instrumentation, Data and Applications
,
1st ed.
(
Wiley
,
Hoboken, NJ
,
2021
).
20.
R. J.
Kline
,
D. F.
Sunday
,
D.
Windover
, and
B. D.
Bunday
,
J. Micro/Nanolithogr., MEMS, MOEMS
16
,
014001
(
2017
).
21.
J. R.
Collins
and
R. O.
Bock
,
Rev. Sci. Instrum.
14
,
135
(
1943
).
23.
R.
Zhu
,
S. R. J.
Brueck
,
N.
Dawson
,
T.
Busani
,
P.
Joseph
,
S.
Singhal
, and
S. V.
Sreenivasan
,
J. Vac. Sci. Technol. B
34
,
06K503
(
2016
).
24.
A. C.
Diebold
,
A.
Antonelli
, and
N.
Keller
,
APL Mater.
6
,
058201
(
2018
).
25.
B. M.
Barnes
,
M. Y.
Sohn
,
F.
Goasmat
,
H.
Zhou
,
A. E.
Vladár
,
R. M.
Silver
, and
A.
Arceo
,
Opt. Express
21
,
26219
(
2013
).
26.
B. M.
Barnes
,
R.
Attota
,
R.
Quintanilha
,
Y.-J.
Sohn
, and
R. M.
Silver
,
Meas. Sci. Technol.
22
,
024003
(
2011
).
27.
R. M.
Silver
,
B. M.
Barnes
,
R.
Attota
,
J.
Jun
,
M.
Stocker
,
E.
Marx
, and
H. J.
Patrick
,
Appl. Opt.
46
,
4248
(
2007
).
28.
R.
Zhu
,
J. J.
Faria-Briceno
,
S. R. J.
Brueck
,
P.
Joseph
,
S.
Singhal
, and
S. V.
Sreenivasan
,
AIP Adv.
10
,
015140
(
2020
).
29.
B.
Gawlik
,
C.
Barrera
,
E. T.
Yu
, and
S. V.
Sreenivasan
,
Opt. Express
28
,
14209
(
2020
).
30.
I.-T.
Chen
,
E.
Schappell
,
X.
Zhang
, and
C.-H.
Chang
,
Microsyst. Nanoeng.
6
,
22
(
2020
).
31.
V. A.
Premnath
,
I.-T.
Chen
,
K.-C.
Chien
, and
C.-H.
Chang
,
J. Vac. Sci. Technol. B
40
,
062803
(
2022
).
32.
X. A.
Zhang
,
I.-T.
Chen
, and
C.-H.
Chang
,
Nanotechnology
30
,
352002
(
2019
).
33.
C.-H.
Chang
,
L.
Tian
,
W. R.
Hesse
,
H.
Gao
,
H. J.
Choi
,
J.-G.
Kim
,
M.
Siddiqui
, and
G.
Barbastathis
,
Nano Lett.
11
,
2533
(
2011
).
34.
Kane
Yee
,
IEEE Trans. Antennas Propag.
14
,
302
(
1966
).
35.
J. H.
Poynting
,
Philos. Trans. R. Soc. Lond.
175
,
343
(
1884
).
36.
D. J.
Griffiths
,
Introduction to Electrodynamics
,
4th ed.
(
Pearson
,
Boston
,
2013
).
37.
A.
Yariv
and
P.
Yeh
,
Optical Waves in Crystals: Propagation and Control of Laser Radiation
,
Wiley classics library ed.
(
Wiley
,
Hoboken, NJ
,
2003
).
38.
E. D.
Palik
and
G.
Ghosh
,
Handbook of Optical Constants of Solids
(
Academic
,
San Diego
,
1998
).
39.
A.
Garahan
,
L.
Pilon
,
J.
Yin
, and
I.
Saxena
,
J. Appl. Phys.
101
,
014320
(
2007
).
You do not currently have access to this content.