In this paper, we present a novel lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor for high-temperature and high breakdown voltage applications. The key idea in our study is replacing a 4H-SiC layer in a part of the buried oxide region (BOX) to reduce temperature effects. Moreover, the top of the 4H-SiC layer has multiple trenches to increase the breakdown voltage. These multiple trenches have been filled with an N-type silicon material. So, we call the proposed structures as multiple trenches 4H-SiC LDMOS (MTSiC-LDMOS). The proposed device is simulated by a two-dimensional ATLAS simulator, and we have shown that the maximum lattice temperature decreases and the breakdown voltage improves by optimization of multiple trenches in the 4H-SiC region. Also, the results show that the current flow and specific on-resistance have improved. Therefore, the MTSiC-LDMOS structure is more reliable than a conventional LDMOS (C-LDMOS) for high-temperature and high breakdown voltage applications.

1.
Tobias
Erlbacher
,
Lateral Power Transistors in Integrated Circuits
(
Springer
,
Berlin
,
2014
).
2.
P.
Antognetti
,
Power Integrated Circuits: Physics, Design and Applications
(
McGraw-Hill
,
New York
,
1986
).
3.
G.
Ma
,
W.
Burger
, and
M.
Shelds
, “High efficiency 0.4 /spl mu/m gate LDMOS power FET for low voltage wireless communications,” in
1999 IEEE MTT-S International Microwave Symposium Digest
(Cat. No.99CH36282), Anaheim, CA (IEEE, 1999), Vol. 3, pp.
1195
1198
.
4.
Z.
Dong
,
B.
Duan
,
C.
Fu
,
H.
Guo
,
Z.
Cao
, and
Y.
Yang
,
IEEE Electron Device Lett.
39
,
1358
(
2018
).
5.
Y.
Wang
,
B.
Duan
,
L.
Sun
,
X.
Yang
,
Y.
Huang
, and
Y.
Yang
,
Superlatt. Microstruct.
151
,
106810
(
2021
).
6.
M. S.
Adhikari
,
R.
Patel
,
S. L.
Tripathi
, and
Y.
Singh
,
Indian J. Pure Appl. Phys.
58
,
678
(
2020
).
8.
N.
Sghaier
,
J. M.
Bluet
,
A.
Souifi
,
G.
Guillot
,
E.
Morvan
, and
C.
Brylinski
,
IEEE Trans. Electron Devices
50
,
297
(
2003
).
9.
H.
Hjelmgren
,
F.
Allerstam
,
K.
Andersson
,
P. Å.
Nilsson
, and
N.
Rorsman
,
IEEE Trans. Electron Devices
57
,
729
(
2010
).
10.
Z.
Ramezani
,
A. A.
Orouji
, and
P.
Keshavarzi
,
Physica E
59
,
202
(
2014
).
12.
A. A.
Orouji
,
S.
Sharbati
, and
M.
Fathipour
,
IEEE Trans. Device Mater. Reliab.
9
,
449
(
2009
).
13.
M.
Saremi
,
B.
Ebrahimi
,
A.
Afzali-Kusha
, and
S.
Mohammadi
,
Microelectron. Reliab.
51
,
2069
(
2011
).
14.
A.
Gavoshani
,
M.
Dehghan
, and
A. A.
Orouji
,
Silicon
14
,
5801
(
2022
).
16.
M.
Saremi
,
M.
Saremi
,
H.
Niazi
,
M.
Saremi
, and
A. Y.
Goharrizi
,
J. Electron. Mater.
46
,
5570
(
2017
).
17.
M.
Mehrad
,
M.
Zareiee
, and
A. A.
Orouji
,
IEEE Trans. Electron Devices
64
,
4213
(
2017
).
18.
A.
Gavoshani
,
A. A.
Orouji
, and
A.
Abbasi
,
Silicon
14
,
597
(
2022
).
19.
M. S.
Adhikari
and
Y.
Singh
,
Indian J. Phys.
91
,
1211
(
2017
).
20.
M. K.
Anvarifard
,
Z.
Ramezani
,
I. S.
Amiri
, and
A. M.
Nejad
,
Mater. Sci. Semicond. Process.
107
,
104849
(
2020
).
21.
Y.
Wang
,
Z.
Wang
,
T.
Bai
, and
J. B.
Kuo
,
IEEE Trans. Electron Devices
65
,
1056
(
2018
).
22.
M. K.
Anvarifard
,
Superlatt. Microstruct.
98
,
492
(
2016
).
23.
M. S.
Adhikari
and
Y.
Singh
,
IETE Tech. Rev.
36
,
234
(
2019
).
24.
A.
Gavoshani
and
A. A.
Orouji
,
Silicon
15
,
109
(
2023
).
26.
S. E.
Jamali Mahabadi
,
S.
Rajabi
, and
J.
Loiacono
,
Superlatt. Microstruct.
85
,
872
(
2015
).
27.
A.
Gavoshani
and
A. A.
Orouji
,
J. Comput. Electron.
20
,
1513
(
2021
).
28.
B. A.
Tahne
,
A.
Naderi
, and
F.
Heirani
,
Silicon
12
,
975
(
2020
).
29.
A.
Gavoshani
and
A. A.
Orouji
,
IET Circuits Devices Syst.
16
,
272
(
2022
).
30.
Device Simulator ATLAS
, Silvaco, International, 2012, see www.silvaco.com.
31.
A.
Sohrabi-Movahed
and
Ali A.
Orouji
,
J. Electron. Mater.
52
,
1366
(
2023
).
32.
B. J.
Baliga
,
Modern Power Devices
, 1st ed. (Wiley-Interscience,
1987
).
33.
M.
Ruff
,
H.
Mitlehner
, and
R.
Helbig
,
IEEE Trans. Electron Devices
41
,
1040
(
1994
).
34.
B. J.
Baliga
, “
Silicon carbide power devices
,” in
Springer Handbook of Semiconductor Devices
(
Springer International Publishing
,
Cham
,
2022
).
35.
C. E.
Weitze
,
J. W.
Palmour
,
C. H.
Carter
,
K.
Moore
,
K. J.
Nordquist
, and
S.
Allen
,
IEEE Trans. Electron Devices
43
,
1732
(
1996
).
36.
J.
St Keszewski
,
A.
Jakubowski
, and
M. L.
Korwin-Pawlowski
,
J. Telecommun. Inf. Technol.
3
,
93
(
2007
), see http://www.itl.waw.pl/czasopisma/JTIT/2007/3/93.pdf.
37.
X.
Cheng
,
Z.
Song
,
Y.
Dong
,
Y.
Yu
, and
D.
Shen
,
Microelectron. Eng.
81
,
150
(
2005
).
38.
Y.
Singh
and
R. S.
Rawat
,
Eng. Sci. Technol. Int. J.
18
,
141
(
2015
).
39.
H. A.
Mansoori
,
A. A.
Orouji
, and
A.
Dideban
,
J. Comput. Electron.
16
,
666
(
2017
).
40.
X.
Luo
et al,
IEEE Electron Device Lett.
37
, 1185 (
2016
).
You do not currently have access to this content.