Dust-mitigating surfaces typically consist of high-aspect-ratio structures that separate particles from resting on the bulk material, thereby limiting adhesion due to short-range van der Waals forces. These surfaces can find uses in solar-panel coatings and a variety of dust-resistant optics. The current method for quantifying surface contamination is optical microscopy, but this method is inadequate for observing particles at the submicrometer scale due to the diffraction limit. Furthermore, regardless of the microscopy technique, particle identification becomes problematic as the particle contaminates approach the same length scale of the surface structures. In this work, we demonstrate a method to identify micro-/nanoparticle contaminates on nanostructured surfaces using electron microscopy and image processing. This approach allows the characterization of particles that approach the length scale of the surface structures. Image processing, including spectrum filters and edge detection, is used to remove the periodic features of the surface nanostructure to omit them from the particle counting. The detection of these small particles using electron microscopy leads to an average of 5.62 particles/100 μm2 detected compared to 0.63 particles/100 μm2 detected for the traditional confocal optical detection method. Beyond dust-mitigation nanostructures, the demonstrated particle detection technique can find applications in nanobiology, the detection of ice nucleation on a structured surface, and semiconductor mask inspections.

1.
K.
Autumn
et al,
Proc. Natl. Acad. Sci. U. S. A.
99
,
12252
(
2002
).
2.
K.-C.
Park
,
H. J.
Choi
,
C.-H.
Chang
,
R. E.
Cohen
,
G. H.
McKinley
, and
G.
Barbastathis
,
ACS Nano
6
,
3789
(
2012
).
3.
C.
Wang
,
T.
Fuller
,
W.
Zhang
, and
K. J.
Wynne
,
Langmuir
30
,
12819
(
2014
).
4.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
,
ACS Nano
4
,
7699
(
2010
).
5.
K.-C.
Chang
et al,
ACS Appl. Mater. Interfaces
5
,
1460
(
2013
).
6.
L.
Gao
and
T. J.
McCarthy
,
Langmuir
22
,
6234
(
2006
).
7.
A.
Dove
,
G.
Devaud
,
X.
Wang
,
M.
Crowder
,
A.
Lawitzke
, and
C.
Haley
,
Planet. Space Sci.
59
,
1784
(
2011
).
8.
R.
Fürstner
,
W.
Barthlott
,
C.
Neinhuis
, and
P.
Walzel
,
Langmuir
21
,
956
(
2005
).
9.
B.
Bhushan
,
Y. C.
Jung
, and
K.
Koch
,
Langmuir
25
,
3240
(
2009
).
10.
S.
Aramrak
,
M.
Flury
, and
J. B.
Harsh
,
Langmuir
27
,
9985
(
2011
).
11.
N.
Cherupurakal
,
M.
Mozumder
,
A.
Mourad
, and
S.
Lalwani
,
Renewable Sustainable Energy Rev.
151
,
111538
(
2021
).
12.
R.
Isaifan
,
D.
Johnson
,
L.
Ackermann
,
B.
Figgis
, and
M.
Ayoub
,
Sol. Energy Mater. Sol. Cells
191
,
413
(
2019
).
13.
S. S.
Lee
,
L.
Micklow
,
A.
Tunell
,
K.-C.
Chien
,
S.
Mohanty
,
N.
Cates
,
S.
Furst
, and
C.-H.
Chang
,
ACS Appl. Mater. Interfaces
15
,
13678
(
2023
).
14.
L.
Taylor
,
H.
Schmitt
,
W.
Carrier
, and
M.
Nakagawa
, in 1st Space Exploration Conference: Continuing the Voyage of Discovery (AIAA, 2005), p. 2510.
15.
N.
Afshar-Mohajer
,
C.-Y.
Wu
,
J. S.
Curtis
, and
J. R.
Gaier
,
Adv. Space Res.
56
,
1222
(
2015
).
16.
J.
Zhu
,
C.-M.
Hsu
,
Z.
Yu
,
S.
Fan
, and
Y.
Cui
,
Nano Lett.
10
,
1979
(
2010
).
17.
D.
Sun
and
K. F.
Böhringer
,
Microsyst. Nanoeng.
6
,
1
(
2020
).
18.
D.
Goossens
,
Sol. Energy
163
,
131
(
2018
).
19.
A.
Sayyah
,
M. N.
Horenstein
, and
M. K.
Mazumder
,
Sol. Energy
107
,
576
(
2014
).
20.
S.
Ghazi
,
A.
Sayigh
, and
K.
Ip
,
Renewable Sustainable Energy Rev.
33
,
742
(
2014
).
21.
M. G.
Khalfallah
and
A. M.
Koliub
,
Desalination
209
,
209
(
2007
).
22.
X.
Wu
,
C. H.
Chon
,
Y.-N.
Wang
,
Y.
Kang
, and
D.
Li
,
Lab Chip
8
,
1943
(
2008
).
23.
D.
Holmes
,
H.
Morgan
, and
N. G.
Green
,
Biosens. Bioelectron.
21
,
1621
(
2006
).
24.
R.
Tian
,
C.
Dierk
,
C.
Myers
, and
E.
Paulos
, in
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
, San Jose, CA, 7–12 May 2016 (
Association for Computing Machinery
,
New York
,
2016
), pp.
1338
1348
.
25.
E. G.
Bakhoum
,
IEEE Sens. J.
12
,
3031
(
2012
).
26.
A. R.
Stivers
et al, in
22nd Annual BACUS Symposium on Photomask Technology
, Monterey, CA, 30 September–4 October 2002 (
SPIE
, Bellingham, WA,
2002
), pp.
408
417
.
27.
H.
Bresch
,
V.-D.
Hodoroaba
,
A.
Schmidt
,
K.
Rasmussen
, and
H.
Rauscher
,
Nanomaterials
12
,
2238
(
2022
).
28.
E.
Verleysen
,
T.
Wagner
,
H.-G.
Lipinski
,
R.
Kägi
,
R.
Koeber
,
A.
Boix-Sanfeliu
,
P.-J.
De Temmerman
, and
J.
Mast
,
Materials
12
,
2274
(
2019
).
29.
N.
Cates
,
V. J.
Einck
,
L.
Micklow
,
J.
Morère
,
U.
Okoroanyanwu
,
J. J.
Watkins
, and
S.
Furst
,
Nanotechnology
32
,
155301
(
2021
).
30.
E.
Zdanowicz
,
T. A.
Dow
, and
R. O.
Scattergood
,
Nanotechnology
23
,
415303
(
2012
).
31.
“Lunar mare (LMS-1) high-fidelity moon dirt simulant,” Exolith Lab, https://exolithsimulants.com/products/lms-1-lunar-mare-simulant (accessed May 5, 2022).
32.
K.
He
,
J.
Sun
, and
X.
Tang
,
IEEE Trans. Pattern Anal. Mach. Intell.
35
,
1397
(
2013
).
33.
J.
Canny
,
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8
,
679
(
1986
).
34.
R.
Van Den Boomgaard
and
R.
Van Balen
,
CVGIP Graph. Models Image Process.
54
,
252
(
1992
).
35.
R. C.
Gonzales
,
R. E.
Woods
, and
S. L.
Eddins
, Digital Image Processing Using MATLAB, 3rd ed. (Gatesmark Publishing, Knoxville, TN, 2020)).
You do not currently have access to this content.