The continuous scaling down of dynamic random access memory devices has necessitated a comprehensive understanding of the initial growth mechanism in atomic layer deposition. In this study, HfO2 was deposited using tetrakis(ethylmethylamido)hafnium (TEMAHf)-H2O on H-/OH-terminated Si (100) surfaces. By analyzing the Hf-O peak in the FTIR spectra and medium-energy ion scattering measurements, it was determined that a monolayer was formed on the H-Si surface at a rate (10 cycles) lower than that for the OH-Si surface (4 cycles). The ligand variations during each cycle, as determined by FTIR measurements, enabled the suggestion of the initial precursor adsorption mechanism. An analysis of the infrared spectra and secondary ion mass spectrometry depth profiles revealed surface-dependent differences in interfacial bonding. This explained the variation in the rate of formation of 1 Ml. Additionally, theoretical investigations using density functional theory calculations identified the reaction pathway with the lowest energy barrier, thereby validating the experimentally proposed mechanism. This study to elucidate the Si surface and the TEMAHf-H2O reaction mechanism provided insights into the analysis of the initial precursor adsorption mechanism for other types of precursors.

1.
A. I.
Kingon
,
J.-P.
Maria
, and
S. K.
Streiffer
,
Nature
406
,
1032
(
2000
).
2.
B. H.
Lee
,
L.
Kang
,
W.-J.
Qi
,
R.
Nieh
,
Y.
Jeon
,
K.
Onishi
, and
J. C.
Lee
, in
International Electronic Devices Meetings 1999
, 5–8 December 1999, Washington, DC (IEEE, Piscataway, NJ,
1999
), pp.
133
136
.
3.
J.
Robertson
,
Rep. Prog. Phys.
69
,
327
(
2006
).
4.
K.
Tomida
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Lett.
89
,
142902
(
2006
).
5.
O.
Sneh
,
R. B.
Clark-Phelps
,
A. R.
Londergan
,
J.
Winkler
, and
T. E.
Seidel
,
Thin Solid Films
402
,
248
(
2002
).
6.
S. M.
George
,
A. W.
Ott
, and
J. W.
Klaus
,
J. Phys. Chem.
100
,
13121
(
1996
).
7.
R. L.
Puurunen
,
J. Appl. Phys.
97
, 121301 (
2005
).
8.
N. E.
Richey
,
C.
de Paula
, and
S. F.
Bent
,
J. Chem. Phys.
152
, 040902 (
2020
).
9.
H. S.
Chang
,
H.
Hwang
,
M.-H.
Cho
, and
D. W.
Moon
,
Appl. Phys. Lett.
86
,
031906
(
2005
).
10.
N.
Uene
,
T.
Mabuchi
,
M.
Zaitsu
,
Y.
Jin
,
S.
Yasuhara
, and
T.
Tokumasu
,
Comput. Mater. Sci.
217
,
111919
(
2023
).
11.
E.
Schilirò
,
G.
Greco
,
P.
Fiorenza
,
C.
Tudisco
,
G. G.
Condorelli
,
S.
Di Franco
,
F.
Roccaforte
, and
R.
Lo Nigro
,
Phys. Status Solidi C
12
,
980
(
2015
).
12.
T.
Ba Tai
,
J.
Son
, and
H.
Shin
,
Appl. Surf. Sci.
612
,
155702
(
2023
).
13.
K.
Li
,
S.
Li
,
N.
Li
,
T. M.
Klein
, and
D. A.
Dixon
,
J. Phys. Chem. C
115
,
18560
(
2011
).
14.
D.-H.
Kim
,
D.-H.
Kim
,
H.-I.
Seo
, and
Y.-C.
Kim
,
J. Nanosci. Nanotechnol.
11
,
4324
(
2011
).
15.
Y.
Wang
,
M.-T.
Ho
,
L. V.
Goncharova
,
L. S.
Wielunski
,
S.
Rivillon-Amy
,
Y. J.
Chabal
,
T.
Gustafsson
,
N.
Moumen
, and
M.
Boleslawski
,
Chem. Mater.
19
,
3127
(
2007
).
16.
M.
Cortez-Valadez
,
C.
Fierro
,
J. R.
Farias-Mancilla
,
A.
Vargas-Ortiz
,
M.
Flores-Acosta
,
R.
Ramírez-Bon
,
J. L.
Enriquez-Carrejo
,
C.
Soubervielle-Montalvo
, and
P. G.
Mani-Gonzalez
,
Chem. Phys.
472
,
81
(
2016
).
17.
N. K.
Oh
,
J.-T.
Kim
,
J.-K.
Ahn
,
G.
Kang
,
S. Y.
Kim
, and
J.-Y.
Yun
,
Appl. Sci. Converg. Technol.
25
,
56
(
2016
).
18.
S. Y.
Lee
,
H. K.
Kim
,
J. H.
Lee
,
I.-H.
Yu
,
J.-H.
Lee
, and
C. S.
Hwang
,
J. Mater. Chem. C
2
,
2558
(
2014
).
19.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
20.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
21.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
23.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
24.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
25.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
26.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
27.
G.
Kresses
and
D.
Joubert
,
Phys. Rev.
59
,
1758
(
1999
).
28.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
29.
K. J.
Kim
,
T. G.
Kim
,
J.-H.
Kwon
,
H.
Ruh
,
K.
Park
, and
W. J.
Min
,
Metrologia
57
,
025001
(
2020
).
30.
T. G.
Kim
,
H.
Yu
,
S. M.
Lee
,
G. Y.
Kwak
,
J.
Shin
, and
K. J.
Kim
,
Appl. Surf. Sci.
545
,
148982
(
2021
).
31.
R. A.
Salinas Domínguez
,
A.
Orduña-Díaz
,
S.
Cerón
, and
M. A.
Dominguez
,
Trans. Electr. Electron. Mater.
21
,
68
(
2020
).
32.
H.
Fu
,
X.
Ding
,
C.
Ren
,
W.
Li
,
H.
Wu
, and
H.
Yang
,
RSC Adv.
7
,
16513
(
2017
).
33.
Y. S.
Mor
et al,
J. Vac. Sci. Technol. B
20
,
1334
(
2002
).
34.
D.
Shandurkov
,
P.
Ignatov
,
I.
Spassova
, and
S.
Gutzov
,
Molecules
26
,
1796
(
2021
).
35.
T. S.
Böscke
, “Crystalline hafnia and zirconia based dielectrics for memory applications,”
Ph.D. thesis
(
Hamburg University of Technology
,
2010
).
36.
Y.
Lee
,
J. W.
DuMont
, and
S. M.
George
,
ECS J. Solid State Sci. Technol.
4
,
N5013
(
2015
).
37.
M.
Dai
,
Y.
Wang
,
J.
Kwon
,
M. D.
Halls
, and
Y. J.
Chabal
,
Nat. Mater.
8
,
825
(
2009
).
38.
J.
Šebera
,
J.
Zemen
,
V.
Jirásek
,
J.
Holovský
, and
V.
Sychrovský
,
J. Phys. Chem. C
125
,
9219
(
2021
).
39.
A.
Coban
,
E. E.
Khawaja
, and
S. M. A.
Durrani
,
Nucl. Intrum. Methods Phys. Res. Sect., B
194
,
171
(
2002
).
40.
K. B.
Chung
,
C. N.
Whang
,
H. S.
Chang
,
D. W.
Moon
, and
M.-H.
Cho
,
J. Vac. Sci. Technol. A
25
,
141
(
2007
).
41.
T.
Sasaki
et al,
J. Electron Microsc.
59
,
S7
(
2010
).
42.
N.
Tanaka
,
J.
Yamasaki
,
S.
Inamoto
, and
K.
Saitoh
, in
Proceedings of the International Workshop on Nano CMOS (IWNC 2006)
(
IEEE
,
New York
,
2006
), pp.
110
124
.
43.
M.
Ylilammi
,
Thin Solid Films
279
,
124
(
1996
).
44.
Y.
Yamazaki
,
J.
Naganuma
, and
H.
Gotoh
,
Sci. Rep.
9
,
20339
(
2019
).
45.
A.
Callegari
,
E.
Cartier
,
M.
Gribelyuk
,
H. F.
Okorn-Schmidt
, and
T.
Zabel
,
J. Appl. Phys.
90
,
6466
(
2001
).
46.
See the supplementary material online for information on ALD growth conditions and FTIR spectra.

Supplementary Material

You do not currently have access to this content.