The effect of varying threading dislocation densities on the internal quantum efficiencies (IQEs) of InGaN quantum wells (QWs), with and without intentionally created “V-pits,” is reported here. InGaN QW samples grown on GaN-on-sapphire templates with threading dislocation densities of <1 × 108 and <1 × 109 cm−2 are compared, with and without GaN/InGaN superlattice (SL) layers incorporated to intentionally open up the threading dislocation cores and form large-size “V-pits.” The formation of “V-pits” is confirmed by cross-sectional transmission electron microscopy to initiate from threading dislocations in the SL layers. The densities of the pits are confirmed by plan-view SEM to agree with the substrate threading dislocation densities. The experimental room temperature IQEs of the “V-pit” QW samples are enhanced to 15% ± 1% compared to 6% ± 2% for conventional QW samples. Both conventional and “V-pit” samples show insensitivity to the magnitude of the dislocation densities with respect to IQE performance, while the “V-pit” samples show shifts in the peak emission wavelengths compared to the conventional samples, attributed to strain modulation. This study provides additional understanding of the causes of the observed insensitivity of the IQEs to different threading dislocation densities.

1.
S. A.
Kukushkin
,
A. V.
Osipov
,
V. N.
Bessolov
,
B. K.
Medvedev
,
V. K.
Nevolin
, and
K. A.
Tcarik
,
Rev. Adv. Mater. Sci.
17
,
1
32
(
2008
).
2.
S.
Nakamura
,
M.
Senoh
, and
T.
Mukai
,
Appl. Phys. Lett.
62
,
2390
(
1993
).
3.
S.
Nakamura
,
T.
Mukai
, and
M.
Senoh
,
Appl. Phys. Lett.
64
,
1687
(
1994
).
4.
M. J.
Davies
,
P.
Dawson
,
F. C-P
Massabuau
,
F.
Oehler
,
R. A.
Oliver
,
M. J.
Kappers
,
T. J.
Badcock
, and
C. J.
Humphreys
,
Phys. Status Solidi C
11
,
750
(
2014
).
5.
W. A.
Brantley
,
O. G.
Lorimor
,
P. D.
Dapkus
,
S. E.
Haszko
, and
R. H.
Saul
,
J. Appl. Phys.
46
,
2629
(
1975
).
6.
J. S.
Speck
and
S. J.
Rosner
,
Phys. B
273–274
,
24
(
1999
).
7.
M. F.
Schubert
et al,
Appl. Phys. Lett.
91
,
231114
(
2007
).
8.
S. F.
Chichibu
et al,
Appl. Phys. Lett.
74
,
1460
(
1999
).
9.
J.
Abell
and
T. D.
Moustakas
,
Appl. Phys. Lett.
92
,
091901
(
2008
).
10.
R. J.
Choi
,
H. J.
Lee
,
Y.-B.
Hahn
, and
H. K.
Cho
,
Korean J. Chem. Eng.
21
,
292
(
2004
).
11.
S.
Dang
,
C.
Li
,
M.
Lu
,
H.
Guo
, and
Z.
He
,
Optik
155
,
26
(
2018
).
12.
S.
Chhajed
,
J.
Cho
,
E. F.
Schubert
,
J. K.
Kim
,
D. D.
Koleske
, and
M. H.
Crawford
,
Phys. Status Solidi A
208
,
947
(
2011
).
13.
S. J.
Rosner
,
E. C.
Carr
,
M. J.
Ludowise
,
G.
Girolami
, and
H. I.
Erikson
,
Appl. Phys. Lett.
70
,
420
(
1997
).
14.
T.
Sugahara
et al,
Jpn. J. Appl. Phys.
37
,
L398
(
1998
).
15.
J. C.
Zhang
et al,
Appl. Phys. Lett.
87
,
071908
(
2005
).
16.
S.
Hammersley
,
D.
Watson-Parris
,
P.
Dawson
,
M. J.
Godfrey
,
T. J.
Badcock
,
M. J.
Kappers
,
C.
McAleese
,
R. A.
Oliver
, and
C. J.
Humphreys
,
J. Appl. Phys.
111
,
083512
(
2012
).
17.
T.
Mukai
,
M.
Yamada
, and
S.
Nakamura
,
Jpn. J. Appl. Phys.
38
,
3976
(
1999
).
18.
A.
Hangleiter
,
F.
Hitzel
,
C.
Netzel
,
D.
Fuhrmann
,
U.
Rossow
,
G.
Ade
, and
P.
Hinze
,
Phys. Rev. Lett.
95
,
127402
(
2005
).
19.
Z.
Quan
,
L.
Wang
,
C.
Zheng
,
J.
Liu
, and
F.
Jiang
,
J. Appl. Phys.
116
,
183107
(
2014
).
20.
Q.
Lv
,
J.
Liu
,
C.
Mo
,
J.
Zhang
,
X.
Wu
,
Q.
Wu
, and
F.
Jiang
,
ACS Photonics
6
,
130
(
2019
).
21.
X.
Tao
et al,
Opt. Mater. Express
8
,
1221
(
2018
).
22.
F.
Jiang
et al,
Photonics Res.
7
,
144
(
2019
).
23.
A. I.
Alhassan
,
R. M.
Farrell
,
B.
Saifaddin
,
A.
Mughal
,
F.
Wu
,
S. P.
DenBaars
,
S.
Nakamura
, and
J. S.
Speck
,
Opt. Express
24
,
17868
(
2016
).
24.
Abdullah.I.
Alhassan
,
Nathan. G.
Young
,
Robert.M.
Farrell
,
Christopher
Pynn
,
Feng
Wu
,
Ahmed.Y.
Alyamani
,
S.
Nakamura
,
Steven.P.
DenBaars
, and
James.S.
Speck
,
Opt. Express
26
,
5591
(
2018
).
25.
A.
Dadgar
,
Phys. Status Solidi B
252
,
1063
(
2015
).
26.
X.
Wu
,
J.
Liu
,
Z.
Quan
,
C.
Xiong
,
C.
Zheng
,
J.
Zhang
,
Q.
Mao
, and
F.
Jiang
,
Appl. Phys. Lett.
104
,
221101
(
2014
).
27.
R.
Yapparov
,
Y. C.
Chow
,
C.
Lynsky
,
F.
Wu
,
S.
Nakamura
,
J. S.
Speck
, and
S.
Marcinkevičius
,
J. Appl. Phys.
128
,
225703
(
2020
).
28.
S.
Marcinkevičius
,
R.
Yapparov
,
Y. C.
Chow
,
C.
Lynsky
,
S.
Nakamura
,
S. P.
DenBaars
, and
J. S.
Speck
,
Appl. Phys. Lett.
119
,
071102
(
2021
).
29.
S.
Zhang
et al,
Photonics Res.
8
,
1671
(
2020
).
30.
C.
Jia
,
C.
Shen
, and
Q.
Wang
,
Phys. Status Solidi A
220
,
2300086
(
2023
).
31.
N.
Okada
,
H.
Kashihara
,
K.
Sugimoto
,
Y.
Yamada
, and
K.
Tadatomo
,
J. Appl. Phys.
117
,
025708
(
2015
).
32.
M.-H.
Sheen
,
S.-D.
Kim
,
J.-H.
Lee
,
J.-I.
Shim
, and
Y.-W.
Kim
,
J. Electron. Mater.
44
,
4134
(
2015
).
33.
C.
Jia
,
T.
Yu
,
H.
Lu
,
C.
Zhong
,
Y.
Sun
,
Y.
Tong
, and
G.
Zhang
,
Opt. Express
21
,
8444
(
2013
).
34.
N.
Nanhui
,
W.
Huaibing
,
L.
Jianping
,
L.
Naixin
,
X.
Yanhui
,
H.
Jun
,
D.
Jun
, and
S.
Guangdi
,
Solid-State Electron.
51
,
860
(
2007
).
35.
W.
Qi
et al,
J. Appl. Phys.
122
,
084504
(
2017
).
36.
T. L.
Song
,
J. Appl. Phys.
98
089901
(
2005
).
37.
M. H.
Zoellner
,
G. A.
Chahine
,
L.
Lahourcade
,
C.
Mounir
,
C. L.
Manganelli
,
T. U.
Schülli
,
U. T.
Schwarz
,
R.
Zeisel
, and
T.
Schroeder
,
ACS Appl. Mater. Interfaces
11
,
22834
(
2019
).
38.
S.
Pereira
,
M. R.
Correia
,
E.
Pereira
,
K. P.
O’Donnell
,
C.
Trager-Cowan
,
F.
Sweeney
, and
E.
Alves
,
Phys. Rev. B
64
,
205311
(
2001
).
You do not currently have access to this content.