Lithography is one of the key steps in micro/nanofabrication, which involves the use of oil-based resists, organic solvents, and toxic chemicals. Nowadays, environmental issues and regulation have raised the need for developing greener materials and processes. Therefore, efforts have been devoted to developing greener resists, in particular, resists based on water-soluble bio-sourced polymers. Among these biopolymers, polysaccharides have gained a strong interest. However, their interaction with silica etching plasmas, in particular, fluorinated plasmas, remains scarcely studied and contradictory results are found in the literature. The present contribution reports on the study of the interaction of two chitosans exhibiting different degrees of N-acetylation with SF6/Ar and CHF3 etching plasmas. The surface modifications and in-depth modifications were studied with x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, infrared spectroscopy, water contact angle, and size-exclusion chromatography. The effect of neutrals, ions, and vacuum ultraviolet (VUV) was considered. Our results suggest that the chitosan selectivity is greatly influenced by the deposition of a fluorocarbon film and that VUV seems to be involved in scissions of the polymer chains. No significant difference between the two chitosans was observed.

1.
J. W.
Coburn
,
Plasma Chem. Plasma Process.
2
,
1
(
1982
).
2.
C. F.
Chelton
,
M.
Glowatz
, and
J. A.
Mosovsky
,
IEEE Trans. Educ.
34
,
269
(
1991
).
3.
M.
Jang
,
C.
Yoon
,
J.
Park
, and
O.
Kwon
,
Saf. Health Work
10
,
114
(
2019
).
4.
B.
Jiang
,
J.
Yang
,
C.
Li
,
L.
Zhang
,
X.
Zhang
, and
P.
Yang
,
Adv. Mater. Interfaces
4
,
1601223
(
2017
).
5.
R. K.
Pal
and
V. K.
Yadavalli
,
Nanotechnology
29
,
335301
(
2018
).
6.
J.
Park
,
S. G.
Lee
,
B.
Marelli
,
M.
Lee
,
T.
Kim
,
H. K.
Oh
,
H.
Jeon
,
F. G.
Omenetto
, and
S.
Kim
,
RSC Adv.
6
,
39330
(
2016
).
7.
S.
Kim
,
B.
Marelli
,
M. A.
Brenckle
,
A. N.
Mitropoulos
,
E. S.
Gil
,
K.
Tsioris
,
H.
Tao
,
D. L.
Kaplan
, and
F. G.
Omenetto
,
Nat. Nanotechnol.
9
,
306
(
2014
).
8.
J.
Morikawa
et al,
RSC Adv.
6
,
11863
(
2016
).
9.
S.
Zhang
,
N.
Qin
, and
T. H.
Tao
, “
Extracted natural silk fibroin as a dual-tone protein resist for eco-friendly electron beam lithography
,” in
IEEE International Conference on Micro Electro Mechanical Systems,
Las Vegas, 22–26 January 2017, (IEEE, New York,
2017
). pp,
724
727
.
10.
A.
Bucciarelli
,
R. K.
Pal
,
D.
Maniglio
,
A.
Quaranta
,
V.
Mulloni
,
A.
Motta
, and
V. K.
Yadavalli
,
Macromol. Mater. Eng.
302
,
1700110
(
2017
).
11.
Z.
Liu
,
Z.
Zhou
,
H.
Tao
, and
K.
Liu
, “
Direct patterning using protein-based water lithography
,” in
IEEE Micro Electro Mechanical Systems
, Belfast, 21–25 January 2018 (IEEE, New York,
2018
), pp.
504
506
.
12.
N. E.
Kurland
,
T.
Dey
,
S. C.
Kundu
, and
V. K.
Yadavalli
,
Adv. Mater.
25
,
6207
(
2013
).
13.
W.
Zeng
,
D.
Yu
,
Y.
Tang
,
C.
Lin
,
S.
Zhu
,
Y.
Huang
,
Y.
Lin
,
X. Y.
Liu
, and
C.
Wu
,
ACS Appl. Bio Mater.
3
,
2891
(
2020
).
14.
W.
Liu
et al,
Adv. Sci.
4
,
1700191
(
2017
).
15.
K.
Morita
,
K.
Yamamoto
,
M.
Harumoto
,
Y.
Tanaka
,
C.
Mori
,
Y.
Arisawa
,
T.
Motono
,
H.
Stokes
, and
M.
Asai
,
Proc. SPIE
11326
,
113260C
(
2020
). doi:10.1117/12.2551476
16.
S.
Takei
et al,
Microelectron. Eng.
122
,
70
(
2014
).
17.
J. J.
Zou
,
C. J.
Liu
, and
B.
Eliasson
,
Carbohydr. Polym.
55
,
23
(
2004
).
18.
Y. C.
Wu
,
T. M.
Lee
,
J. C.
Lin
,
S. Y.
Shaw
, and
C. Y.
Yang
,
J. Biomater. Sci., Polym. Ed.
21
,
563
(
2010
).
19.
D. C.
Bastos
,
A. E. F.
Santos
,
M. L. V. J.
da Silva
, and
R. A.
Simão
,
Ultramicroscopy
109
,
1089
(
2009
).
20.
P.
Rachtanapun
,
D.
Boonyawan
,
R. A.
Auras
, and
G.
Kasi
,
Polymers
14
,
3796
(
2022
).
21.
S. S.
Voznesenskiy
,
A.
Nepomnyaschiy
, and
Y. N.
Kulchin
,
Solid State Phenom.
213
,
180
(
2014
).
22.
S.
Voznesenskiy
and
A.
Nepomnyaschiy
,
Solid State Phenom.
245
,
195
(
2015
).
23.
J. M.
Karp
,
Y.
Yeo
,
W.
Geng
,
C.
Cannizarro
,
K.
Yan
,
D. S.
Kohane
,
G.
Vunjak-Novakovic
,
R. S.
Langer
, and
M.
Radisic
,
Biomaterials
27
,
4755
(
2006
).
24.
A. K.
Grebenko
,
K. A.
Motoviloc
,
A. V.
Bubis
, and
A. G.
Nasibulin
,
Small
18
,
2200476
(
2022
).
25.
M.
Caillau
,
P.
Crémillieu
,
E.
Laurenceau
,
Y.
Chevolot
,
J.-L.
Leclercq
,
S.
Alekseev
,
C.
Chevalier
, and
T.
Delair
,
J. Vac. Sci. Technol. B
35
,
06GE01
(
2017
).
26.
M.
Caillau
et al.,
Proc. SPIE
10587
,
105870S
(
2018
). doi:10.1117/12.2292312
27.
O.
Sysova
et al,
ACS Appl. Polymer Mater.
4
,
4508
(
2022
).
28.
G.
Lamarque
,
J. M.
Lucas
,
C.
Viton
, and
A.
Domard
,
Biomacromolecules
6
,
131
(
2005
).
29.
C.
Schatz
,
C.
Viton
,
T.
Delair
,
C.
Pichot
, and
A.
Domard
,
Biomacromolecules
4
,
641
(
2003
).
30.
G.
Beamson
and
D.
Briggs
,
High Resolution XPS of Organic Polymers : The Scienta Esca300 Database
(
John Wiley & Sons Ltd
,
Chichester
,
1992
).
31.
Z. L.
Petrovic
,
F.
Tochikubo
,
S.
Kakuta
, and
T.
Makabe
,
J. Appl. Phys.
73
,
2163
(
1993
).
32.
H. M.
Anderson
,
J. A.
Merson
, and
R. W.
Light
,
IEEE Trans. Plasma Sci.
14
,
156
(
1986
).
33.
K. H.
Shim
,
Y. H.
Kil
,
H. D.
Yang
,
B. K.
Park
,
J. H.
Yang
,
S.
Kang
,
T. S.
Jeong
, and
T. S.
Kim
,
Mater. Sci. Semicond. Process.
15
,
364
(
2012
).
34.
X.
Li
,
H.
Zhou
,
C. D. W.
Wilkinson
, and
I. G.
Thayne
,
Jpn. J. Appl. Phys.
45
,
8364
(
2006
).
35.
H.
Gokan
,
S.
Esho
, and
Y.
Ohnishi
,
J. Electrochem. Soc.
130
,
143
(
1983
).
36.
R. R.
Kunz
,
S. C.
Palmateer
,
A. R.
Forte
,
R. D.
Allen
,
G. M.
Wallraff
,
R. A.
DiPietro
, and
D. C.
Hofer
,
Proc. SPIE
2724
,
365
376
(
1996
). doi:10.1117/12.241835
37.
S.
Engelmann
et al,
J. Vac. Sci. Technol. B
25
,
1353
(
2007
).
38.
M.
Gatto
,
D.
Ochi
,
C. M. P.
Yoshida
, and
C. F.
da Silva
,
Carbohydr. Polym.
210
,
56
(
2019
).
39.
L. J. R.
Foster
,
S.
Ho
,
J.
Hook
,
M.
Basuki
, and
H.
Marçal
,
PLoS One
10
,
e0135153
(
2015
).
40.
M.
Rinaudo
,
Prog. Polym. Sci.
31
,
603
(
2006
).
41.
W. A.
Daoud
,
J. H.
Xin
,
Y. H.
Zhang
, and
C. L.
Mak
,
Thin Solid Films
515
,
835
(
2006
).
42.
S.
Vaswani
,
J.
Koskinen
, and
D. W.
Hess
,
Surf. Coat. Technol.
195
,
121
(
2005
).
43.
G. S.
Oehrlein
,
R. J.
Phaneuf
, and
D. B.
Graves
,
J. Vac. Sci. Technol. B
29
,
010801
(
2011
).
44.
R. L.
Bruce
et al,
J. Appl. Phys.
107
,
084310
(
2010
).
45.
A.
Pranda
,
S. A.
Gutierrez Razo
,
Z.
Tomova
,
J. T.
Fourkas
, and
G. S.
Oehrlein
,
J. Vac. Sci. Technol. A
36
,
021304
(
2018
).
46.
X.
Hua
,
S.
Engelmann
,
G. S.
Oehrlein
,
P.
Jiang
,
P.
Lazzeri
,
E.
Iacob
, and
M.
Anderle
,
J. Vac. Sci. Technol. B
24
,
1850
(
2006
).
47.
C.
Cardinaud
,
A.
Rhounna
,
G.
Turban
, and
B.
Grolleau
,
Rev. Phys. Appl.
24
,
309
(
1989
).
48.
F.
Garboriau
,
M. C.
Fernandez-Peignon
,
G.
Cartry
, and
C.
Cardinaud
,
J. Vac. Sci. Technol. A
23
,
226
(
2005
).
49.
Y.
Kawamoto
,
K.
Ogura
,
M.
Shojiya
,
M.
Takahashi
, and
K.
Kadono
,
J. Fluorine Chem.
96
,
135
(
1999
).
50.
P. Y.
Tessier
,
T.
Chevolleau
,
C.
Cardinaud
, and
B.
Grolleau
,
Nucl. Instrum. Methods Phys. Res., Sect. B
155
,
280
(
1999
).
51.
G. B.
Fisher
,
N. E.
Erikson
,
E.
Madey
, and
J. T.
Yates
,
Surf. Sci.
65
,
210
(
1977
).
52.
A.
Benninghoven
,
Angew. Chem., Int. Ed. Engl.
33
,
1023
(
1994
).
53.
L.
Tortora
,
S.
Concolato
,
M.
Urbini
,
S. M.
Giannitelli
,
F.
Basoli
,
A.
Rainer
,
M.
Trombetta
,
M.
Orsini
, and
P.
Mozetic
,
Biointerphases
11
,
02A323
(
2016
).
54.
B.
Lepoittevin
,
T.
Elzein
,
D.
Dragoe
,
A.
Bejjani
,
F.
Lemée
,
J.
Levillain
,
P.
Bazin
,
P.
Roger
, and
I.
Dez
,
Carbohydr. Polym.
205
,
437
(
2019
).
55.
R. N. S.
Sodhi
,
Analyst
129
,
483
(
2004
).
56.
P.
Lazzeri
,
X.
Hua
,
G.
Oehrlein
,
E.
Iacob
,
M.
Barozzi
,
M.
Bersani
, and
M.
Anderle
,
Appl. Surf. Sci.
252
,
7186
(
2006
).
57.
F.
Lewis
,
S.
Turgeon
,
P.
Chevallier
,
J.
Pireaux
,
M.
Tatoulian
, and
D.
Mantovani
,
Plasma Processes Polym.
7
,
309
(
2010
).
58.
A.
Pranda
,
S. A.
Gutierrez Razo
,
J. T.
Fourkas
, and
G. S.
Oehrlein
,
Plasma Processes Polym.
16
,
1900026
(
2019
).
59.
J. F.
Rabek
,
Photodegradation of Polymer: Physical Characteristics and Applications
(
Springer
,
Berlin
,
1996
).
60.
A.
Sionkowska
,
A.
Płanecka
,
K.
Lewandowska
,
B.
Kaczmarek
, and
P.
Szarszewska
,
Prog. Chem.: Appl. Chitin Deriv.
18
,
21
(
2013
).
61.
J. M.
Wasikiewicz
,
F.
Yoshii
,
N.
Nagasawa
,
R. A.
Wach
, and
H.
Mitomo
,
Radiat. Phys. Chem.
73
,
287
(
2005
).
62.
I.
Zainol
,
H. M.
Akil
, and
A.
Mastor
,
Mater. Sci. Eng., C
29
,
292
(
2009
).
63.
F.
Weilnboeck
et al,
J. Vac. Sci. Technol. B
28
,
993
(
2010
).
64.
M.
Kasaai
,
Carbohydr. Polym.
71
,
497
(
2008
).
65.
J.
Brugnerotto
,
J.
Lizardi
,
F. M.
Goycoolea
,
W.
Argüelles-Monal
,
J.
Desbrières
, and
M.
Rinaudo
,
Polymer
42
,
359
(
2001
).
66.
N.
Gholami
,
B.
Jaleh
,
R.
Golbedaghi
,
M. M.
Larijani
,
P.
Wanichapichart
,
M.
Nasrollahzadeh
, and
R.
Varma
,
Molecules
25
,
2292
(
2020
).
67.
N.
Mohamed
and
N. G.
Madian
,
Mater. Today Commun.
25
,
101372
(
2020
).
68.
I.
Corazzari
,
R.
Nistico
,
F.
Turci
,
M. G.
Faga
,
F.
Franzoso
,
S.
Tabasso
, and
G.
Magnacca
,
Polym. Degrad. Stab.
112
,
1
(
2015
).
69.
G.
Lawrie
,
I.
Keen
,
B.
Drew
,
A.
Chandler-Temple
,
L.
Rintoul
,
P.
Fredericks
, and
L.
Grøndahl
,
Biomacromolecules
8
,
2533
(
2007
).
70.
A.
Sionkowska
,
H.
Kaczmarek
,
M.
Wisniewski
,
J.
Skopinska
,
S.
Lazare
, and
V.
Tokarev
,
Surf. Sci.
600
,
3775
(
2006
).
71.
U.
Gryczka
,
D.
Dondi
,
A. G.
Chmielewski
,
W.
Migdal
,
A.
Buttafava
, and
A.
Faucitano
,
Radiat. Phys. Chem.
78
,
543
(
2009
).
72.
P.
Bussiere
,
J.
Gardette
,
G.
Rapp
,
C.
Masson
, and
S.
Therias
,
Carbohydr. Polym.
259
,
117715
(
2021
).
73.
I. K. D.
Dimzon
and
T. P.
Knepper
,
Int. J. Biol. Macromol.
72
,
939
(
2015
).
74.
S. M.
Wang
,
Q. Z.
Huang
, and
Q. S.
Wang
,
Carbohydr. Res.
340
,
1143
(
2005
).
75.
K.
Zoschke
,
H.
Bornick
, and
E.
Worch
,
Water Res.
52
,
131
(
2014
).
76.
S.
Gligorovski
,
R.
Strekowski
,
S.
Barbati
, and
D.
Vione
,
Chem. Rev.
115
,
13051
(
2015
).
77.
G.
Gonzalez
,
E.
Oliveros
,
W.
Michael
, and
A.
Braun
,
J. Photochem. Photobiol. C: Photochem. Rev.
5
,
225
(
2004
).
78.
D.
Popovic
,
M.
Mozetic
,
A.
Vesel
,
G.
Primc
, and
R.
Zaplotnik
,
Plasma Processes Polym.
18
,
2100061
(
2021
).
79.
See supplementary material online for high resolution O1s, N1s, F1s and S2p XPS peaks of Chitosan DA 35% before and after plasma. IR spectra of Chitosan DA 1% before and after plasma are also found in the supplementary data.

Supplementary Material

You do not currently have access to this content.