Normally off AlGaN/GaN high electron mobility transistors (HEMTs) with p-type gates are attracting increasing attention due to their high safety and low power loss in the field of power switching. In this work, to solve the Mg difficult activating problem of the conventional p-GaN gate AlGaN/GaN HEMTs, we propose an advanced design for the normally off AlGaN/GaN HEMT with a p-type hexagonal boron nitride (h-BN) gate cap layer to effectively manipulate the channel transport of the device. The simulation results demonstrate that the p-hBN gate cap HEMTs yield superior performance over conventional p-GaN gate HEMTs in terms of output current and breakdown voltage, which can be attributed to the deeper potential well formation at the AlGaN/GaN interface and more accumulation of holes located at the p-hBN/AlGaN interface. Moreover, we investigate the effect of bandgap variation on device performance, taking into account that the exact bandgap of h-BN remains under debate. Herein, valuable insights into h-BN cap-gate E-mode AlGaN/GaN HEMT devices are provided, which could serve as a useful reference for the future development of robust III-nitride material power electronic devices.

1.
K. J.
Chen
,
O.
Haberlen
,
A.
Lidow
,
C. L.
Tsai
,
T.
Ueda
,
Y.
Uemoto
, and
Y.
Wu
,
IEEE Trans. Electron Devices
64
,
779
(
2017
).
2.
R.
Rupp
,
T.
LasKa
,
O.
Haberlen
, and
M.
Treu
, “
Application specific trade-offs for WBG SiC GaN and high-end Si power switch technologies
,”
IEDM Technical Digest
, San Francisco, 15–17 December 2014 (IEEE, Piscataway, 2014).
3.
Y.
Dora
,
A.
Chakraborty
,
L.
McCarthy
,
S.
Keller
,
S. P.
Denbaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
27
,
713
(
2006
).
4.
J.
Simon
,
V.
Protasenko
,
C.
Lian
,
H.
Xing
, and
D.
Jena
,
Science
327
,
60
(
2010
).
5.
X.
Wang
,
R.
Yu
,
C.
Jiang
,
W.
Hu
,
W.
Wu
,
Y.
Ding
,
W.
Peng
,
S.
Li
, and
Z. L.
Wang
,
Adv. Mater.
28
,
7234
(
2016
).
6.
O.
Ambacher
et al,
J. Appl. Phys.
85
,
3222
(
1999
).
7.
J.-Z.
Zhang
,
A.
Dyson
, and
B. K.
Ridley
,
Phys. Rev. B
84
,
155310
(
2011
).
8.
T.
Oka
and
T.
Nozawa
,
IEEE Electron Device Lett.
29
,
668
(
2008
).
9.
Y.
Cai
,
Y.
Zhou
,
K. M.
Lau
, and
K. J.
Chen
,
IEEE Trans. Electron Devices
53
,
2207
(
2006
).
10.
N.
Tsuyukuchi
,
K.
Nagamatsu
,
Y.
Hirose
,
M.
Iwaya
,
S.
Kamiyama
,
H.
Amano
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
45
,
L319
(
2006
).
11.
T.
Sugiyama
,
H.
Amano
,
D.
Iida
,
M.
Iwaya
,
S.
Kamiyama
and
I.
Akasaki
,
Jpn. J. Appl. Phys.
50
,
01AD03
(
2011
).
12.
I.
Hwang
et al., “
1.6 kV, 2.9 mΩ cm2 normally-off p-GaN HEMT device
,”
2012 24th International Symposium on Power Semiconductor Devices and ICs
,
Bruges, 3–7 June 2012
(
IEEE, Piscataway,
2012
), pp.
41
44
.
13.
X.
Hu
,
G.
Simin
,
J.
Yang
,
M.
Asif Khan
,
R.
Gaska
, and
M. S.
Shur
,
Electron. Lett.
36
,
753
(
2000
).
14.
I.
Hwang
et al,
IEEE Electron Device Lett.
34
,
202
(
2013
).
15.
J.
Zhang
et al,
IEEE Trans. Electron Devices
67
,
3304
(
2020
).
16.
N. E.
Posthuma
et al, “
An industry-ready 200 mm p-GaN E-mode GaN-on-Si power technology
,” 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD),
Chicago, IL, 13–17 May 2018
(
IEEE, Piscataway,
2018
), pp.
284
287
.
17.
U.
Wahl
et al,
Phys. Rev. Lett.
118
,
095501
(
2017
).
18.
J.
Wang
,
F.
Ma
,
W.
Liang
,
R.
Wang
, and
M.
Sun
,
Nanophotonics
6
,
943
(
2017
).
19.
J.
Wang
,
X.
Mu
,
X.
Wang
,
N.
Wang
,
F.
Ma
,
W.
Liang
, and
M.
Sun
,
Mater. Today Phys.
5
,
29
(
2018
).
20.
J.
Wang
,
F.
Ma
,
W.
Liang
, and
M.
Sun
,
Mater. Today Phys.
2
,
6
(
2017
).
21.
J. D.
Caldwell
,
I.
Aharonovich
,
G.
Cassabois
,
J. H.
Edgar
,
B.
Gil
, and
D. N.
Basov
,
Nat. Rev. Mater.
4
,
552
(
2019
).
22.
H. X.
Jiang
and
J. Y.
Lin
,
Semicond. Sci. Technol.
29
,
084003
(
2014
).
23.
D. H.
Mudiyanselage
,
D.
Wang
,
Y.
Zhao
, and
H.
Fu
,
J. Appl. Phys.
131
,
210901
(
2022
).
24.
R.
Dahal
,
J.
Li
,
S.
Majety
,
B. N.
Pantha
,
X. K.
Cao
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
98
,
211110
(
2011
).
25.
D. A.
Laleyan
,
S.
Zhao
,
S. Y.
Woo
,
H. N.
Tran
,
H. B.
Le
,
T.
Szkopek
,
H.
Guo
,
G. A.
Botton
, and
Z.
Mi
,
Nano Lett.
17
,
3738
(
2017
).
26.
S.
Majety
,
J.
Li
,
X. K.
Cao
,
R.
Dahal
,
B. N.
Pantha
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
100
,
061121
(
2012
).
27.
A.
Mballo
,
A.
Srivastava
,
S.
Sundaram
,
P.
Vuong
,
S.
Karrakchou
,
Y.
Halfaya
,
S.
Gautier
,
P. L.
Voss
,
A.
Ahaitouf
,
J. P.
Salvestrini
, and
A.
Ougazzaden
,
Nanomaterials
11
,
211
(
2021
).
28.
G.
Giovannetti
,
P. A.
Khomyakov
,
G.
Brocks
,
P. J.
Kelly
, and
J.
van den Brink
,
Phys. Rev. B
.
76
,
073103
(
2007
).
29.
A.
Laturia
,
M. L.
Van de Put
, and
W. G.
Vandenberghe
,
npj 2D Mater. Appl.
2
,
6
(
2018
).
30.
P.
Miro
,
M.
Audiffred
, and
T.
Heine
,
Chem. Soc. Rev.
43
,
6537
(
2014
).
31.
R.
Dahal
,
K.
Ahmed
,
J. W.
Wu
,
A.
Weltz
,
J. J.-Q.
Lu
,
Y.
Danon
, and
I. B.
Bhat
,
Appl. Phys. Express
9
,
065801
(
2016
).
32.
M. M.
Khatami
,
M. L.
Van de Put
, and
W. G.
Vandenberghe
,
Phys. Rev. B
104
,
235424
(
2021
).
33.
Y.
Hattori
,
T.
Taniguchi
,
K.
Watanabe
, and
K.
Nagashio
,
Phys. Rev. B
97
,
045425
(
2018
).
34.
M. J.
Powers
,
M. C.
Benjamin
,
L. M.
Porter
,
R. J.
Nemanich
,
R. F.
Davis
,
J. J.
Cuomo
,
G. L.
Doll
, and
S. J.
Harris
,
Appl. Phys. Lett.
67
,
3912
(
1995
).
35.
J. L.
Hudgins
,
G. S.
Simin
,
E.
Santi
, and
M. A.
Khan
,
IEEE Trans. Power Electron.
18
,
907
(
2003
).
36.
Y.
Hattori
,
T.
Taniguchi
,
K.
Watanabe
, and
K.
Nagashio
,
ACS Appl. Mater. Interfaces
8
,
27877
(
2016
).
37.
K.
Watanabe
,
T.
Taniguchi
, and
H.
Kanda
,
Nat. Mater.
3
,
404
(
2004
).
38.
G.
Cassabois
,
P.
Valvin
, and
B.
Gil
,
Nat. Photonics
10
,
262
(
2016
).
39.
T. C.
Doan
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
109
,
122101
(
2016
).
40.
H. X.
Jiang
and
J. Y.
Lin
,
ECS J. Solid State Sci. Technol.
6
,
Q3012
(
2017
).
You do not currently have access to this content.