One main obstacle to obtaining high carrier mobility in transistors with metal-oxide-semiconductor (MOS) structures is carrier scattering, which has been systematically investigated. In the past few decades, much attention was preferentially paid to the scatterings arising from the region near the semiconductor/oxide interface because they can affect the carrier transport in the semiconductor channel more directly and effectively, e.g., polaronic effect, Coulomb scattering, surface-roughness scattering, and intrinsic phonon scattering resulted from the thermal vibration of the semiconductor channel. However, scattering originated from hybrid interface plasmon/optical-phonon excitations, so-called remote phonon scattering, has been neglected to some extent, but is especially severe for gate oxides with high dielectric constants due to the easy vibrations of their atoms. On the other hand, plasmons generated from the oscillations of majority carriers in the gate electrode can couple with the remote phonons to suppress the remote phonon scattering, which is called the gate screening effect. However, when the frequency of the gate-electrode plasmon is close/equal to that of the gate-dielectric phonon, the resonance between the gate electrode and the gate dielectric greatly enhances the remote phonon scattering to severely degrade the carrier mobility (so-called gate antiscreening effect). This work intends to give a comprehensive review on the origins, effects, suppression methods, and recent advances of the remote phonon scattering, with a view to achieving high-mobility MOS devices (including those based on two-dimensional semiconductors) with high-k gate dielectrics for future high-speed electronic applications.

1.
I. E.
Lilienfeld
, U.S. patent 1,745,175 (
18 January 1930
).
2.
I. E.
Lilienfeld
, U.S. patent 1,900,018 (
7 March 1933
).
3.
I. E.
Lilienfeld
, U.S. patent 1,877,140 (
13 September 1932
).
4.
O.
Hei1
, British patent 439,457 (
6 December 1935
).
5.
W.
Shockley
and
G. L.
Pearson
,
Phys. Rev.
74
,
232
(
1948
).
6.
J. R.
Ligenza
and
W. G.
Spitzer
,
J. Phys. Chem. Solids
14
,
131
(
1960
).
7.
R. G.
Arns
,
Eng. Sci. Educ. J.
7
,
233
(
1998
).
8.
H. K. J.
Ihantola
and
J. L.
Moll
,
Solid-State Electron.
7
,
423
(
1964
).
9.
J. L.
Moll
,
M.
Tanenbaum
,
J. M.
Goldey
, and
N.
Holonyak
,
Proc. IRE
44
,
1174
(
1956
).
10.
J. L.
Moll
and
R.
Van
,
Solid-State Electron.
6
,
147
(
1963
).
11.
L. W.
James
and
J. L.
Moll
,
Phys. Rev.
183
,
740
(
1969
).
12.
S. R.
Hofstein
,
Solid-State Electron.
10
,
657
(
1967
).
13.
S. R.
Hofstein
and
G.
Warfield
,
IEEE Trans. Electron Devices
12
,
129
(
1965
).
14.
S. R.
Hofstein
,
IEEE Trans. Electron Devices
ED-13
,
222
(
1966
).
15.
H.
Li
,
N.
Tessler
, and
J. L.
Bredas
,
Adv. Funct. Mater.
28
,
1803096
(
2018
).
16.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
2007
).
17.
A. R.
Brown
,
D. M.
de Leeuw
,
E. E.
Havinga
, and
A.
Pomp
,
Synth. Met.
68
,
65
(
1994
).
18.
B. P.
Singh
and
R.
Singh
,
Electronic Devices and Integrated Circuits
(
Pearson Education India
, Chennai, Tamil Nadu, India,
2006
).
19.
U. K.
Mishra
and
J.
Singh
,
Semiconductor Device Physics and Design
(
Springer-Verlag
,
Dordrecht
,
2008
).
20.
E.
Conwel
and
V. F.
Weisskopf
,
Phys. Rev.
77
,
388
(
1950
).
21.
A.
Sharma
,
N. M. A.
Janssen
,
S. G. J.
Mathigssen
,
D. M.
de Leeuw
,
M.
Kemerink
, and
P. A.
Bobbert
,
Phys. Rev. B
83
,
125310
(
2011
).
22.
V.
Tilak
,
K.
Matocha
, and
G.
Dunne
,
IEEE Trans. Electron Devices
54
,
2823
(
2007
).
23.
J. R.
Weber
,
Appl. Phys. Lett.
91
,
142101
(
2007
).
24.
H. A.
Moghadam
,
S.
Dimitrijev
,
J.
Han
, and
D.
Haasmann
,
Microelectron. Reliab.
60
,
1
(
2016
).
25.
K.
Uchida
,
J.
Koga
, and
S.
Takagi
, in
IEDM Technical Digest
, 8–11 December 2002, San Francisco, CA (IEEE, New York,
2003
), p.
805
.
26.
V.
Lordi
,
P.
Erhart
, and
D.
Aberg
,
Phys. Rev. B
81
,
5204
(
2010
).
27.
S.
Jin
,
M. V.
Fischetti
, and
T. W.
Tang
,
IEEE Trans. Electron Devices
54
,
2191
(
2007
).
28.
A.
Pirovano
,
A. L.
Lacaita
,
G.
Ghidini
, and
G.
Tallarida
,
IEEE Electron Device Lett.
21
,
34
(
2000
).
29.
H.
Suzuura
and
T.
Ando
,
Phys. Rev. B
65
,
5412
(
2002
).
30.
31.
Y.
Yamada
and
Y.
Kanemitsu
,
NPG Asia Mater.
14
,
48
(
2022
).
32.
D.
Akay
and
S. K.
Maiti
,
J. Phys. D: Appl. Phys.
55
,
255302
(
2022
).
33.
D.
Akay
and
J.
Schliemann
,
Eur. Phys. J. Plus
137
,
1273
(
2022
).
35.
J. W.
Harrison
and
J. R.
Hauser
,
Phys. Rev. B
13
,
5347
(
1976
).
36.
S.
Barraud
,
Olivier
Bonno
, and
M.
Casse
,
J. Appl. Phys.
104
,
073725
(
2008
).
37.
S.
Saito
,
K.
Torii
,
Y.
Shimamoto
,
O.
Tonomura
,
D.
Hisamoto
,
T.
Onai
,
M.
Hiratani
, and
S.
Kimura
,
J. Appl. Phys.
98
,
113706
(
2005
).
38.
H.
Ota
et al, in
IEDM Technical Digest
, 10–12 December 2007, Washington, DC (IEEE, New York,
2008
), p.
65
.
39.
B.
Laikhtman
and
P. M.
Solomon
,
J. Appl. Phys.
103
,
4501
(
2008
).
40.
J. P.
Locquet
,
C.
Marchiori
,
M.
Sousa
,
J.
Fempeyrine
, and
J. W.
Seo
,
J. Appl. Phys.
100
,
051610
(
2006
).
41.
S.
Gopalan
,
M. L.
Van de Put
,
G.
Gaddemane
, and
M. V.
Fischetti
,
Phys. Rev. Appl.
18
,
054062
(
2022
).
42.
M. V.
Fischetti
,
D. A.
Neumayer
, and
E. A.
Cartier
,
J. Appl. Phys.
90
,
4587
(
2001
).
43.
K.
Hess
and
P.
Vogl
,
Solid-State Commun.
30
,
797
(
1979
).
44.
B. T.
Moore
and
D. K.
Ferry
,
J. Appl. Phys.
51
,
2603
(
1980
).
45.
S.
Dubey
,
A.
Paliwal
, and
S.
Ghosh
,
Adv. Mater. Res.
1141
,
44
(
2016
).
46.
S. Q.
Wang
and
G. D.
Mahan
,
Phys. Rev. B
6
,
4517
(
1972
).
47.
A.
Dyson
and
B. K.
Ridkey
, arXiv:2004.06454 (2020).
48.
M. V.
Fischetti
,
W. G.
Vandenberghe
,
M. L. V.
de Put
,
G.
Gaddemane
, and
J.
Fang
,
Ab Initio Methods for Electronic Transport in Semiconductors and Nanostructures
(
Springer
,
New York
,
2023
).
49.
H.
Ota
et al, in
IEDM Technical Digest
10–12 December 2007, Washington, DC (IEEE, New York,
2007
), p.
65
.
50.
M.
Bohr
,
R.
Chau
,
T.
Ghani
, and
K.
Mistry
,
IEEE Spectr.
44
,
29
(
2007
).
51.
G.
Ribes
,
J.
Mitard
,
M.
Denais
,
S.
Bruyere
,
F.
Monsieur
,
C.
Parthasarathy
,
E.
Vincent
, and
G.
Ghibaudo
,
IEEE Trans. Device Mater. Reliab.
5
,
5
(
2005
).
52.
I.
Bunget
and
M.
Popescu
,
Physics of Solid Dielectrics
(
Elsevier
,
New York
,
1984
).
53.
55.
N. F.
Mott
and
R. W.
Gurney
,
Electronic Processes in Ionic Crystals
, 2nd ed. (
Dover Publications Inc.
,
New York
,
1964
).
56.
P. V.
Rysselberghe
,
J. Phys. Chem.
36
,
1152
(
1932
).
57.
R. R.
Reddy
and
Y. N.
Ahammed
,
Infrared Phys. Technol.
37
,
505
(
1996
).
58.
T. W.
Dakin
,
IEEE Electr. Insul. Mag.
22
,
11
(
2006
).
60.
M. V.
Fischetti
and
S. E.
Laux
,
Phys. Rev. B
48
,
2244
(
1993
).
61.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
,
IEEE Trans. Electron Devices
41
,
2357
(
1994
).
62.
S.
Villa
,
A. L.
Lacaita
,
L. M.
Perron
, and
R.
Bez
,
IEEE Trans. Electron Devices
45
,
110
(
1998
).
63.
R. O.
Regan
and
M.
Fischetti
,
J. Comput. Electron.
6
,
81
(
2007
).
64.
Y.
Zhang
,
M. V.
Fischetti
,
B.
Soree
, and
T.
O’Regan
,
J. Appl. Phys.
108
,
123713
(
2010
).
65.
R.
Chau
,
S.
Datta
,
M.
Doczy
,
B.
Doyle
,
J.
Kavalieros
, and
M.
Metz
,
IEEE Electron Device Lett.
25
,
408
(
2004
).
66.
M.
von Haartman
,
B. G.
Malm
, and
M.
Ostling
,
IEEE Trans. Electron Devices
53
,
836
(
2006
).
67.
S.
Inamoto
,
J.
Yamasaki
,
E.
Okunishi
,
K.
Kakushima
,
H.
Iwai
, and
N.
Tanaka
,
J. Appl. Phys.
107
,
124510
(
2010
).
68.
I. Y.
Chang
,
S. W.
You
,
M. G.
Chen
,
P. C.
Juan
,
C. H.
Chen
, and
J. Y.
Lee
,
J. Appl. Phys.
105
,
104512
(
2009
).
69.
K.
Ghosh
and
U.
Singisetti
,
J. Appl. Phys.
117
,
065703
(
2015
).
71.
J. C.
Park
,
S.
Kim
,
C. J.
Kim
,
S.
Kim
,
D. H.
Kim
,
I. T.
Cho
, and
H. I.
Kwon
,
Jpn. J. Appl. Phys.
49
,
100205
(
2010
).
72.
I. T.
Cho
,
W. S.
Cheong
,
C. S.
Hwang
,
J. M.
Lee
,
H. I.
Kwon
, and
J. H.
Lee
,
IEEE Electron Device Lett.
30
,
828
(
2009
).
73.
Z. W.
Wang
,
L.
Liu
, and
Z. Q.
Li
,
Appl. Phys. Lett.
106
,
101601
(
2015
).
74.
B. S.
Kandemir
and
D.
Akay
,
Philos. Mag.
97
,
2225
(
2017
).
75.
D.
Akay
,
Superlattices Microstruct.
117
,
18
(
2018
).
76.
D.
Akay
,
Semicond. Sci. Technol.
36
,
045001
(
2021
).
77.
A.
Konar
,
T.
Fang
, and
D.
Jena
,
Phys. Rev. B
82
,
5452
(
2010
).
78.
K.
Zou
,
X.
Hong
,
D.
Keefer
, and
J.
Zhu
,
Phys. Rev. Lett.
105
,
126601
(
2010
).
79.
Z. Y.
Ong
and
M. V.
Fischetti
,
Phys. Rev. B
88
,
045405
(
2013
).
80.
L.
Zeng
,
Z.
Xin
,
S.
Chen
,
G.
Du
,
J.
Kang
, and
X.
Liu
,
Appl. Phys. Lett
103
,
3505
(
2013
).
81.
K.
Ghosh
and
U.
Singisetti
,
J. Appl. Phys.
118
,
135711
(
2015
).
82.
A.
Hauber
and
S.
Fahy
,
Phys. Rev. B
95
,
045210
(
2017
).
83.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
84.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
86.
S. J.
Oh
,
D. K.
Kim
, and
C. R.
Kagan
,
ACS Nano
6
,
4328
(
2012
).
87.
P.
Chang
,
X.
Liu
,
F.
Liu
, and
G.
Du
,
Micromachines
9
,
674
(
2018
).
88.
A. R.
Bhatt
,
K. W.
Kim
,
M. A.
Stroscio
,
G. J.
Iafrate
,
M.
Dutta
,
H. L.
Grubin
,
R.
Haque
, and
X. T.
Zhu
,
J. Appl. Phys.
73
,
2338
(
1993
).
89.
S.
Datta
et al, in
IEDM Technical Digest
8–10 December 2003, Washington, DC (IEEE, New York,
2003
), p.
653
.
90.
C. Y.
Han
,
Y. X.
Ma
,
W. M.
Tang
,
X. L.
Wang
, and
P. T.
Lai
,
IEEE Electron Device Lett.
38
,
744
(
2017
).
91.
Y. X.
Ma
,
C. Y.
Han
,
W. M.
Tang
, and
P. T.
Lai
,
IEEE Electron Device Lett.
39
,
963
(
2018
).
92.
Y. X.
Ma
,
H.
Su
,
W. M.
Tang
, and
P. T.
Lai
,
IEEE Electron Device Lett.
40
,
893
(
2019
).
93.
H.
Su
,
Y. X.
Ma
,
P. T.
Lai
, and
W. M.
Tang
,
IEEE Electron Device Lett.
40
,
1953
(
2019
).
94.
X. Y.
Zhao
,
L.
Liu
, and
J. P.
Xu
,
IEEE Trans. Electron Devices
68
,
3087
(
2021
).
95.
Y. X.
Ma
,
W. M.
Tang
, and
P. T.
Lai
,
IEEE Electron Device Lett.
39
,
1516
(
2018
).
96.
Y. X.
Ma
,
W. M.
Tang
, and
P. T.
Lai
,
Appl. Phys. Lett.
117
,
1601
(
2020
).
97.
C. Y.
Han
,
W. M.
Tang
, and
P. T.
Lai
,
Appl. Surf. Sci.
544
,
148656
(
2021
).
98.
H.
Sun
,
H.
Su
, and
P. T.
Lai
,
IEEE Trans. Electron Devices
69
,
5562
(
2022
).
99.
H.
Su
,
W. M.
Tang
, and
P. T.
Lai
,
J. Appl. Phys.
130
,
015302
(
2021
).
100.
R.
Kotlyar
,
M. D.
Giles
,
P.
Matagne
,
B.
Obradovic
,
L.
Shifren
,
M.
Stettler
, and
E.
Wang
, in
IEDM Technical Digest
, 13–15 December 2004, San Francisco, CA (IEEE, New York,
2004
), p.
391
.
101.
Y. X.
Ma
,
H.
Su
,
W. M.
Tang
, and
P. T.
Lai
,
Appl. Surf. Sci.
565
,
150374
(
2021
).
102.
H.
Su
,
W. M.
Tang
, and
P. T.
Lai
,
IEEE Trans. Electron Devices
69
,
174
(
2022
).
103.
H.
Su
,
W. M.
Tang
, and
P. T.
Lai
,
AIP Adv.
12
,
115004
(
2022
).
104.
E.
Petryayeva
and
U. J.
Krull
,
Anal. Chim. Acta
706
,
8
(
2011
).
105.
D.
Losic
,
J. G.
Mitchell
, and
N. H.
Voelcker
,
New J. Chem.
30
,
908
(
2006
).
106.
A. A.
Balandin
and
D. L.
Nika
,
Mater. Today
15
,
266
(
2012
).
You do not currently have access to this content.