Metalorganic chemical vapor deposition (MOCVD) epitaxial materials technology for the growth of compound semiconductors has been developed over the past 60-plus years to become the dominant process for both research and production of light-emitting devices as well as many other electronic and optoelectronic devices. Today, MOCVD has become the “Swiss Army Knife” of semiconductor epitaxial growth, covering a wide variety of compound semiconductors and device applications. Because of the flexibility and control offered by this process and the material quality produced by MOCVD, many important III–V semiconductor devices have become commercially viable. This paper attempts to provide a personal view of the early development of MOCVD and some brief historical discussion of this important and highly versatile materials technology for the growth of high-quality devices employing ultrathin layers and heterojunctions of III–V compound semiconductors, e.g., quantum-well lasers, light-emitting diodes, heterojunction solar cells, transistors, and photonic integrated circuits.

2.
M. L.
Royer
,
Bull. Soc. Française Minérol.
51
,
7
(
1928
). This is a long paper summarizing many heteroepitaxial crystal orientations. See: https://www.merriam-webster.com/dictionary/epitaxy (last accessed July 15, 2023).
3.
This conference was organized and strongly supported by the French Ministry of Defense DRET, Semiconductors and Components Department. This organization had supported some of the MOCVD research at Thompson CSF in the early 1980s.
4.
J.
Bardeen
and
W. H.
Brattain
,
Phys. Rev.
74
,
230
(
1948
).
5.
W.
Shockley
, “Circuit element using semiconductive material,” U.S. patent 2,569,347 (25 September 1951).
6.
W.
Schockley
,
M.
Sparks
, and
G. K.
Teal
,
Phys. Rev.
83
,
151
(
1951
).
7.
G. K.
Teal
,
IEEE Trans. Electron Devices
23
,
621
(
1976
), see p. 624.
8.
H.
Christensen
and
G. K.
Teal
, “Method of fabrication germanium bodies,” U.S. patent 2,692,839 (26 October 1954).
9.
G. K.
Teal
,
M.
Sparks
, and
E.
Buehler
,
Phys. Rev.
81
,
637
(
1951
).
10.
G. K.
Teal
,
J. R.
Fisher
, and
A. W.
Treptow
,
J. Appl. Phys.
17
,
879
(
1946
).
11.
R. P.
Ruth
,
J. C.
Marinace
, and
W. C.
Dunlap
,
J. Appl. Phys.
31
,
995
(
1960
). This manuscript was submitted on September 8, 1958 but was delayed in publication.
12.
E. S.
Wajda
,
B. W.
Kippenhan
, and
W. H.
White
,
IBM J. Res. Dev.
4
,
288
(
1960
).
13.
R. L.
Newman
and
N.
Goldsmith
,
J. Electrochem. Soc.
108
,
1127
(
1961
).
14.
R. N.
Hall
and
W. C.
Dunlap
,
Phys. Rev.
50
,
467
(
1950
).
15.
H. M.
Manasevit
,
J. Cryst. Growth
55
,
1
(
1981
). This paper was given by Dr. Manasevit at the First International Conference on Metal Organic Vapor Phase Epitaxy (ICMOVPE I) in Ajaccio, France in 1981.
16.
I have previously covered some of this history in
R. D.
Dupuis
,
IEEE J. Sel. Top. Quant. Electron.
6
,
1040
(
2000
);
Science
226,
623
(
1984
).
18.
D.
Seyferth
,
Organometallics
20
,
1488
(
2001
).
19.
L. C.
Cadet de Gassicourt
, “Suite d'Expériences nouvelles sur l'Encre sympathique de M. Hellot qui peuvent servir à l'analyse du Cobolt; et Histoire d‘une liqueur fumante, tirée de l'Arsènic” Memoires de Mathématique et de Physique. Presentés à l'Académie Royale des Sciences par diverse Savans et lûs dans ses Assemblées. Tome Troisième, MDCCLX (1760), p. 623. These results were communicated to the Royal Academy of Sciences in 1757, reported on favorably by two academicians, Bourdelin and Lassone, in January 1758, and finally published in 1760. See Ref. 17.
20.
R. W.
Bunsen
,
Poggendorf's Ann.
40
,
219
(
1837
). Bunsen’s related papers were collected and published in Volume 27 of Ostwald’s Klassiker der exakten Wissenschaften (Wilhelm Engelmann:  Leipzig, 1891; edited by Adolf von Baeyer) under the title Untersuchungenüber die Kakodylreihe.
21.
See: https://en.wikipedia.org/wiki/Arsine#cite_note-11 (last accessed July 24, 2023).
22.
C. A.
Kraus
and
F. E.
Toonder
,
Proc. Natl. Acad. Sci. U.S.A.
19
,
292
(
1933
).
23.
See, for example,
R.
Didchenko
,
J. E.
Alix
, and
R. H.
Toeniskoetter
,
J. Inorg. Nucl. Chem.
14
,
35
(
1960
). This author noted that “The compound decomposes sometimes explosively into indium phosphide and methane when heated to 270–300 °C in inert atmospheres or in vacuo.” It is not clear how the creation of InP was confirmed.
24.
Standard Telephones and Cables (STC) was a subsidiary of International Telephone and Telegraph (ITT)
, STC was founded in 1883 in London as International Western Electric by the Western Electric Company (USA). The related organization, Standard Telecommunication Laboratories (STL) was the UK research center for STC. STL moved from Enfield, North London to Harlow, Essex in 1959. See: https://en.wikipedia.org/wiki/Standard_Telephones_and_Cables (last accessed September 24, 2023).
25.
T. R.
Scott
,
G.
King
,
J. M.
Wilson
, and
Standard Telephones and Cables, Ltd.
, “Improvements in or relating to the production of material for semi-conductors,” British patent 778,383 (3 July 1957). This patent mentions III–V epitaxial growth using “gaseous compounds comprising a hydride of one element and a hydride, carboxyl or lower alkyl of the other element.” It is not clear that this was ever tried experimentally.
26.
R. A.
Ruehrwein
, “Altering proportions in vapor deposition process to form a mixed crystal graded energy gap,” U.S. patent 3,224,913 (21 December 1965). For the description of MOCVD, see Column 1, Paragraph 6ff.
27.
N.
Holonyak
, Jr.
,
IEEE J. Quant. Electron.
23
,
684
(
1987
). See bottom of the first paragraph on p. 685 and private communication.
28.
N.
Holonyak
, Jr.
,
D. C.
Jillson
, and
S. F.
Bevacqua
, “
Halogen vapor transport and growth of epitaxial layers of intermetallic compounds and compound mixtures
,” in
AIME Conference,
Los Angeles, August 1961
, edited by J. B. Schroeder, Vol. 15, Metallurgy of Semiconductor Materials
(
Interscience
,
New York
,
1962
), pp.
49
59
.
29.
G. R.
Antell
and
D.
Effer
,
J. Electrochem. Soc.
106
,
509
(
1959
).
30.
N.
Holonyak
, Jr.
, private communication (October 26, 2018).
31.
After Holonyak left GE for the University of Illinois at Urbana-Champaign in 1963, Holonyak became a regular consultant for Monsanto’s III-V LED materials and device business.
32.
R. A.
Ruehrwein
, “Use of hydrogen halide and hydrogen in separate streams as carrier gases in vapor deposition of III-V compounds,” U.S. patent 3,218,205 (16 November 1965).
33.
In the late 1960s and through the 1970s, Monsanto was the world’s largest producer of III-V semiconductor epitaxial materials and visible LEDs manufactured with Ruehrwein’s open-type hydride VPE process with an estimated output per month of >100 000 in2 of GaAsP epitaxial materials.
34.
W.
Miederer
,
G.
Ziegler
,
R.
Dötzer
, and
Siemens-Schuckertwerke
, “Method of crucible-free production of gallium arsenide rods from alkyl gallium and arsenic compounds at low temperatures,” U.S. patent 3,226,270 (28 December 1965).
35.
Manasevit began working for North American Aviation in 1960. North American Aviation merged with Rockwell-Standard Corp. in 1967 and changed the corporate name to “North American Rockwell” and then later changed it again to “Rockwell International.” Part of this company is now owned by Boeing.
36.
H. M.
Manasevit
,
Appl. Phys. Lett.
12
,
156
(
1968
).
37.
H. M.
Manasevit
and
W. I.
Simpson
, “
The use of metalorganics in the preparation of semiconductor materials—I: Epitaxial gallium-V compounds
,”
presented at the 133rd Meeting of the Electrochemical Society
,
Boston, MA
, March 1968 (The Electrochemical Society, Pennington, NJ,
1968
), p.
13
, Abstract 63.
38.
H. M.
Manasevit
and
W. I.
Simpson
,
J. Electrochem. Soc.
116
,
1725
(
1969
).
39.
H. M.
Manasevit
, “Epitaxial composite and method of making,” U.S. patent 4,404,265 (13 September 1983).
40.
H. M.
Manasevit
, “Epitaxial composite and method of making,” U.S. patent 4,368,098 (11 January 1983).
41.
“Rockwell MOCVD patent ruled invalid,” Compound Semiconductor, pp. 14–15, March/April 1997.
42.
H. M.
Manasevit
and
W. I.
Simpson
,
J. Appl. Phys.
35
,
1349
(
1964
).
44.
See: https://minutemanmissile.com/minutemani.html (last accessed July 31, 2023).
45.
The prime contract for the Minuteman I was issued to Boeing in ∼1958 and the contract for the guidance computer was awarded to the Autonetics Division of NAA. Minuteman I entered service in 1962.
46.
The D-17B computer weighed approximately 62 pounds (28 kg), contained 1521 Si transistors, 6282 Si diodes, 1116 discrete capacitors, and 504 discrete resistors. System reliability was critical. See: https://en.wikipedia.org/wiki/D-17B (last accessed July 31, 2023).
47.
See: https://en.wikipedia.org/wiki/LGM-30_Minuteman for “The Minuteman IA entered service in 1962 at Malmstrom Air Force Base (AFB) in Montana” (last accessed September 12, 2023).
48.
H. M.
Manasevit
and
W. I.
Simpson
, “Epitaxial deposition of silicon on alpha alumina,” U.S. patent 3,393,088 (16 July 1968).
49.
Interestingly the U.S. Department of Defense Ballistic Missile Defense Glossary Ver. 3.0 from June 1997 still listed “SOS” as one of the acronyms of interest.
51.
For example, from pSemi, see: https://www.psemi.com/newsroom/blogs/15645-part-5-why-silicon-on-sapphire (last accessed July 30, 2023).
52.
G. R.
Cronin
and
R. W.
Haisty
,
J. Electrochem. Soc.
111
,
874
(
1964
).
53.
R. W.
Haisty
and
P. L.
Hoyt
,
Solid State Electron.
10
,
795
(
1967
).
54.
Ethyl Corporation of America’s specialty chemical division that made electronic grade chemicals was sold to Albemarle Corporation in 1994.
55.
Texas Alkyls was founded around 1960 and sold to AkzoNobel and separated from that company in 2018 to become Nouryon.
56.
D. B.
Malpass
, “
Industrial metal alkyls and their use in polyolefin catalysts
,” in
Handbook of Transition Metal Polymerization Catalysts
,
2nd ed.
, edited by
R.
Hoff
(
Wiley Online Library
, Hoboken, NJ,
2018
), Chap. 1 (last accessed July 7, 2023).
57.
H. M.
Manasevit
, private communication (June 1975).
58.
H. M.
Manasevit
, private communication (May 1976).
59.
M.
Waldner
and
I. D.
Rouse
,
Proc. IEEE
57
,
2066
(
1969
).
60.
H. M.
Manasevit
,
J. Cryst. Growth
22
,
125
(
1974
).
61.
H. M.
Manasevit
and
W. I.
Simpson
,
J. Electrochem. Soc.
118
,
644
(
1971
).
62.
H. M.
Manasevit
,
J. Electrochem. Soc.
118
,
647
(
1971
).
63.
H. M.
Manasevit
,
F. M.
Erdman
, and
W. I.
Simpson
,
J. Electrochem. Soc.
118
,
1864
(
1971
).
64.
H. M.
Manasevit
,
J. Cryst. Growth
13/14
,
306
(
1972
).
65.
H. M.
Manasevit
and
W. I.
Simpson
,
J. Electrochem. Soc.
120
,
135
(
1973
).
66.
H. M.
Manasevit
and
W. I.
Simpson
,
J. Electrochem. Soc.
122
,
444
(
1975
).
67.
P.
Rai-Choudhury
,
J. Electrochem. Soc.
116
,
1745
(
1969
).
68.
T.
Saitoh
and
S.
Minagawa
,
J. Electrochem. Soc.
120
,
656
(
1973
).
69.
Y.
Seki
,
K.
Tanno
,
K.
Iida
, and
E.
Ichiki
,
J. Electrochem. Soc.
122
,
1108
(
1975
).
70.
B. J.
Baliga
and
S. K.
Ghandhi
,
J. Electrochem. Soc.
121
,
1642
(
1974
).
71.
S. J.
Bass
,
J. Cryst. Growth
31
,
172
(
1975
).
72.
A. Y.
Cho
,
J. Cryst. Growth
201/202
,
1
(
1999
).
73.
L. L.
Chang
and
R.
Ludeke
, “
Chapter 2.2: Molecular-beam epitaxy
,” in
Epitaxial Growth
, edited by
J.
Matthews
(
Academic
, New York,
1975
).
74.
K. G.
Günther
,
Naturwissenschaften
45
,
415
(
1958
).
75.
J. E.
Davey
and
T.
Pankey
,
J. Appl. Phys.
36
,
1941
(
1968
).
76.
J. A.
Arthur
and
J. J.
LePore
,
J. Vac. Sci. Technol.
6
,
545
(
1969
).
77.
A. Y.
Cho
,
J. Appl. Phys.
41
,
2780
(
1970
).
78.
A. Y.
Cho
and
H. C.
Casey
, Jr.
,
Appl. Phys. Lett.
25
,
288
(
1974
).
79.
A. Y.
Cho
,
R. W.
Dixon
,
H. C.
Casey
, Jr.
, and
R. L.
Hartman
,
Appl. Phys. Lett.
28
,
501
(
1976
).
80.
L. L.
Chang
,
L.
Esaki
,
W. E.
Howard
, and
R.
Ludeke
,
J. Vac. Sci. Technol.
10
,
11
(
1973
).
81.
H. M.
Manasevit
and
K.
Hess
,
J. Electrochem. Soc.
126
,
2031
(
1979
).
83.
M. G.
Craford
, private communication (August 11, 2023).
84.
H.
Rupprecht
,
J. M.
Woodall
, and
G. D.
Petit
,
Appl. Phys. Lett.
11
,
81
(
1967
).
85.
R. N.
Bhargava
,
IEEE Trans. Electron Devices
22
,
691
(
1975
).
86.
Zh. I.
Alferov
,
V. M.
Andreev
,
D. Z.
Garbuzov
,
Yu. V.
Zhilyaev
,
D. P.
Morozov
,
E. L.
Portnoi
, and
V. G.
Trofim
,
Fiz. Tekh. Poluprov.
4
,
1826
(
1970
).
87.
I.
Hayashi
,
M. B.
Panish
,
P. W.
Foy
, and
S.
Sumski
,
Appl. Phys. Lett.
17
,
109
(
1970
).
88.
Zh. I.
Alferov
,
V. M.
Andreev
,
M. B.
Kagan
,
I. I.
Protasov
, and
V. G.
Trofim
,
Fiz. Tekh. Poluprov.
4
,
2378
(
1970
) [Sov. Phys. Semicond. 4(9), 1573 (1971)].
89.
W. P.
Dumke
,
J. M.
Woodall
, and
V. L.
Rideout
,
Solid State Electron.
15
,
1339
(
1972
).
90.
A. Y.
Cho
and
W. C.
Bellamy
,
J. Appl. Phys.
46
,
783
(
1975
).
91.
A. Y.
Cho
and
J. R.
Arthur
,
Prog. Solid State Chem.
10
,
157
(
1975
).
92.
R.
Tsu
,
A.
Koma
, and
L.
Esaki
,
J. Appl. Phys.
46
,
842
(
1975
).
93.
L. L.
Chang
,
L.
Esaki
,
G. A.
Sai-Halasz
, and
R.
Tsu
,
IBM Tech. Disclos. Bull.
20
,
2452
(
1977
).
94.
C. T.
Foxon
,
J. A.
Harvey
, and
B. A.
Joyce
,
J. Phys. Chem. Solids
34
,
1693
(
1973
).
95.
S.
Gonda
,
Y.
Matsushima
,
Y.
Makita
, and
S.
Mukai
,
Jpn. J. Appl. Phys.
14
,
935
(
1975
).
96.
Y.
Seki
,
K.
Tanno
,
K.
Iida
, and
E.
Ichiki
,
J. Electrochem. Soc.
122
,
1108
(
1975
).
97.
L. L.
Chang
,
L.
Esaki
,
W. E.
Howard
,
R.
Ludeke
, and
G.
Schul
,
J. Vac. Sci. Technol.
10
,
655
(
1973
).
98.
I.
Hayashi
,
M. B.
Panish
, and
F. K.
Reinhart
,
J. Appl. Phys.
42
,
1929
(
1971
).
99.
J. M.
Woodall
and
H. J.
Hovel
,
Appl. Phys. Lett.
21
,
379
(
1972
).
100.
V. M.
Andreev
,
T. M.
Golovner
,
M. B.
Kagan
,
N. S.
Koroleva
,
T. L.
Lyubasheveskaya
,
T. A.
Nuller
, and
D. N.
Tret’yakov
,
Sov. Phys. Semicond.
7
,
1525
(
1974
).
101.
Rockwell International had at that time a “corporate research lab” in Thousand Oaks, CA, that did U.S. government-sponsored III–V semiconductor research as well, but at that time, they did not have MOCVD at that location—only LPE growth. Eventually, the Anaheim lab was closed and the MOCVD reactors moved to Thousand Oaks.
103.
S. J.
Bass
and
P. E.
Oliver
,
Institute of Physics Conference Series
, No. 33 b, pp. 1–10, September 26–29,
1976
.
104.
A. M.
White
,
P. J.
Dean
, and
P.
Porteous
,
J. Appl. Phys.
47
,
3230
(
1976
).
105.
The typical metalorganic sources were supplied in “off-the-shelf” uncleaned and unpassivated 304 stainless steel cylinders with 304 SS Teflon-packed valves with pipe-threaded fittings, Teflon-tape-sealed pipe-thread joints—including a 1/4 in. NPT pipe-thread “plug” at the bottom of the vessel, and 1/4 in. dia. Swagelok® tube fittings for the bubbler connections. No special cleaning of these components was made before the vendor assembled the package before loading with metalorganic chemicals.
106.
The SS e-beam welding was done by Electron-Beam Engineering in Anaheim CA. They are still operating today in 2023.
107.
ERDA was the U.S. Energy Research and Development Administration. It was created out of the U.S. Atomic Energy Commission in 1974 after the 1973 OAPEC oil crisis to create alternate sources of energy for the USA. It was merged with the Federal Energy Administration to form the U.S. Department of Energy in 1977.
108.
In 1975, I had developed a process for gold-plating all of the front and rear ferrules for Swagelok® fittings and the SS gaskets for the VCR fittings to prevent galling and a better seal. These were processed per my specification commercially by Anodyne Corporation, in Santa Anna, CA—they still are operating as a plating business in 2023. This greatly improved the leak-tightness of the gas piping system of the reactor—as measured by the “pressure rise” leak test.
109.
Electronic mass-flow gas controllers (MFCs) were developed by NASA and first used in the Apollo Program to accurately control the percent oxygen in the spacecraft cabin—after the famous and disastrous Apollo 1 Command Module fire in 1967. MFCs became commercially available in the 1970s with the Tylan® FC-260, which for the first time gave semiconductor manufacturers automated control of process gasses into their tools, enabling great improvements in the throughput rates and yields.
110.
See: https://www.brooksinstrument.com/en/about-us/history (last accessed September 3, 2023).
111.
D. R.
Scifres
,
R. D.
Burnham
, and
W.
Streifer
,
Proc. SPIE
239
,
7
(
1980
).
112.
D. R.
Scifres
,
R. D.
Burnham
,
M.
Bernstein
,
H.
Chung
,
F.
Endicott
,
W.
Mosby
,
J.
Tramontana
,
J.
Walker
, and
R. D.
Yingling
, Jr.
,
Appl. Phys. Lett.
41
,
501
(
1982
).
113.
R. R.
Jacobs
and
D. R.
Scifres
,
IEEE J. Sel. Top. Quantum Electron.
6
,
1228
(
2000
).
114.
R. D.
Dupuis
,
P. D.
Dapkus
,
R. D.
Yingling
, and
L. A.
Moudy
,
Appl. Phys. Lett.
31
,
201
(
1977
).
115.
The 81st Device Research Conference was held in June 2023 in Santa Barbara, CA. This is the oldest continuing conference on semiconductor devices that exists today in the known universe. See: https://www.mrs.org/drc-2023 (last accessed July 30, 2023).
116.
R. D.
Dupuis
and
P. D.
Dapkus
,
Appl. Phys. Lett.
31
,
466
(
1977
).
117.
R. D.
Dupuis
,
P. D.
Dapkus
, and
L. A.
Moudy
, “
Low-threshold room-temperature Ga(1-x)AlxAs/GaAs lasers grown by metalorganic chemical vapor deposition
,” in
Late News Paper IIa-9, 35th IEEE Solid-State Device Research Conference
,
Cornell, NY
, 20–24 June (
IEEE
, New York,
1977
).
118.
This response was a copy of the remark made earlier at the same conference by Robert L Hartman of Bell Labs when after giving a paper on long-lived AlGaAs-GaAs LDs grown by LPE, he was asked how such excellent reliability results were achieved. He had replied “By great attention to detail!” I was merely using the same response.
119.
R. D.
Dupuis
and
P. D.
Dapkus
,
Appl. Phys. Lett.
31
,
839
(
1977
).
120.
R. D.
Dupuis
and
P. D.
Dapkus
,
Appl. Phys. Lett.
32
,
406
(
1978
).
121.
E. A.
Rezek
,
N.
Holonyak
, Jr.
,
B. A.
Vojak
,
G. E.
Stillman
,
J. A.
Rossi
,
D. L.
Keune
, and
J. D.
Fairing
, “
Liquid phase epitaxial InGaPAs multilayered heterojunction lasers exhibiting ‘quantum size effects
,’” in
Late News Paper IIIb-5.5 35th IEEE Solid-State Device Research Conference
,
Cornell, NY
, 20–24 June (
IEEE
, New York,
1977
).
122.
E. A.
Rezek
,
N.
Holonyak
, Jr.
,
B. A.
Vojak
,
G. E.
Stillman
,
J. A.
Rossi
,
D. L.
Keune
, and
J. D.
Fairing
,
Appl. Phys. Lett.
31
,
288
(
1977
).
123.
L.
Esaki
and
R.
Tsu
,
IBM J. Res. Dev.
14
,
61
(
1970
).
124.
R.
Dingle
,
W.
Wiegmann
, and
C. H.
Henry
,
Phys. Rev. Lett.
33
,
827
(
1974
).
125.
R. C.
Miller
,
R.
Dingle
,
A. C.
Gossard
,
R. A.
Logan
,
W. A.
Nordland
, Jr.
, and
W.
Wiegmann
,
J. Appl. Phys.
47
,
4509
(
1976
).
126.
R.
Dingle
and
C. H.
Henry
, “Quantum effects in heterostructure lasers,” U.S. patent 3,982,207A (21 September 1976).
127.
Later, when Professor Holonyak was asked about why he would try such a crazy thing to grow these thin layers by LPE, he simply responded: “The crystal does not know how it was grown!”
128.
P. S.
Zory
, Jr.
, “The many advantages of the quantum-well LD design,” in Quantum Well Lasers (
Academic
,
Boston
,
1993
).
129.
R. D.
Dupuis
,
P. D.
Dapkus
,
N.
Holonyak
, Jr.
,
E. A.
Rezek
, and
R.
Chin
,
Appl. Phys. Lett.
32
,
295
(
1978
).
130.
R. D.
Dupuis
and
P. D.
Dapkus
,
IEEE J. Quantum Electron.
15
,
128
(
1979
).
131.
N.
Holonyak
, Jr.
,
R. M.
Kolbas
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
Appl. Phys. Lett.
33
,
73
(
1978
).
132.
N.
Holonyak
, Jr.
,
R. M.
Kolbas
,
W. D.
Laidig
,
B. A.
Vojak
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
Appl. Phys. Lett.
33
,
737
(
1978
).
133.
R. D.
Dupuis
,
P. D.
Dapkus
,
R.
Chin
,
N.
Holonyak
, Jr.
, and
S. W.
Kirchoefer
,
Appl. Phys. Lett.
34
,
265
(
1979
).
134.
The origin of this term is confirmed in the historical review article:
C. H.
Henry
, “
Foreword: The origin of quantum wells and the quantum well laser
,” in
Quantum Well Lasers
, edited by
P. S.
Zory
, Jr.
(
Academic
,
Boston
,
1993
), p.
11
.
135.
N.
Holonyak
, Jr.
,
R. M.
Kolbas
,
E. A.
Rezek
,
R.
Chin
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
J. Appl. Phys.
49
,
5392
(
1978
).
136.
R. M.
Kolbas
,
N.
Holonyak
, Jr.
,
B. A.
Vojak
,
K.
Hess
,
M.
Altarelli
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
Solid State Commun.
31
,
1033
(
1979
).
137.
B. A.
Vojak
,
N.
Holonyak
, Jr.
,
R.
Chin
,
E. A.
Rezek
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
Appl. Phys.
50
,
5835
(
1979
).
138.
W. T.
Tsang
,
C.
Weisbuch
,
R. C.
Miller
, and
R.
Dingle
,
Appl. Phys. Lett.
35
,
673
(
1979
).
139.
R. D.
Dupuis
,
P. D.
Dapkus
,
R. D.
Yingling
, and
L. A.
Moudy
, “
High-efficiency GaAlAs–GaAs heterostructure solar cells grown by metalorganic chemical vapor deposition
,”
presented at the 35th IEEE Solid-State Device Research Conference
,
Cornell, NY
, 20–24 June (
IEEE
, New York,
1977
) Paper IIIb-4.
140.
M.
Yamaguchi
,
K.
Ikeda
,
T.
Takamoto
,
N.
Kojima
, and
Y.
Ohshita
,
Proc. SPIE
9083
,
908312
(
2014
).
142.
See: https://www.nrel.gov/pv/cell-efficiency.html (last accessed July 12, 2023).
143.
P.
Schygulla
et al,
Prog. Photovolt. Res. Appl.
30
,
869
(
2022
).
144.
R. M.
France
,
J. F.
Geisz
,
T.
Song
,
W.
Olavarria
,
M.
Young
,
A.
Kibbler
, and
M. A.
Steiner
,
Joule
6
,
1121
(
2022
).
145.
R. D.
Dupuis
,
Proc. IEEE
101
,
2188
(
2013
).
146.
B. A.
Vojak
,
S. W.
Kirchofer
,
N.
Holonyak
, Jr.
,
R.
Chin
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
J. Appl. Phys.
50
,
5830
(
1979
).
147.
R. D.
Dupuis
,
P. D.
Dapkus
,
C. M.
Garner
,
C. Y.
Su
, and
W. E.
Spicer
,
Appl. Phys. Lett.
34
,
335
(
1979
).
148.
R.
Ludeke
,
L.
Esaki
, and
L. L.
Chang
,
App. Phys. Lett.
24
,
417
(
1974
).
149.
R. D.
Dupuis
and
P. D.
Dapkus
,
Appl. Phys. Lett.
33
,
724
(
1978
).
150.
J. J. J.
Yang
,
R. D.
Dupuis
, and
P. D.
Dapkus
,
J. Appl. Phys.
53
,
7218
(
1982
).
151.
R. D.
Dupuis
and
P. D.
Dapkus
,
Appl. Phys. Lett.
33
,
68
(
1978
).
152.
I thought about using the DBR cladding layers in a “vertical cavity mode” geometry but thought that the optical gain path would be too short to achieve population inversion and laser operation: My mistake!
153.
R. D.
Dupuis
,
Appl. Phys. Lett.
35
,
311
(
1979
).
154.
E. J.
Thrush
and
J. E. A.
Whiteaway
,
Electron. Lett.
15
,
666
(
1979
).
155.
J. E. A.
Whiteaway
and
E. J.
Thrush
,
J. Appl. Phys.
52
,
1528
(
1981
).
156.
R. D.
Dupuis
,
R. L.
Hartman
, and
F.
Nash
,
IEEE Electron Device Lett.
4
,
286
(
1983
).
157.
M.
Razeghi
,
P.
Hirtz
,
R.
Blondeau
,
B.
de Cremoux
, and
J. P.
Duchemin
,
Electron. Lett.
19
,
481
(
1983
).
158.
R. D.
Dupuis
,
H.
Temkin
, and
L. C.
Hopkins
,
Electron. Lett.
21
,
60
(
1985
).
159.
R. D.
Dupuis
,
J. C.
Campbell
, and
J. R.
Velebir
, “
Planar InGaAs/InP photodiodes grown by metalorganic chemical vapor deposition
,” in
Technical Digest of the 1985 IEEE International Electron Devices Meeting
(
IEEE
,
New York
,
1985
), pp.
465
467
.
160.
R. D.
Dupuis
,
J. C.
Campbell
, and
J. R.
Velebir
,
Electron. Lett.
22
,
48
(
1986
).
161.
R. D.
Dupuis
,
J. R.
Velebir
, and
J. C.
Campbell
,
IEEE Electron Device Lett.
7
,
296
(
1986
).
162.
This reactor was dubbed “The Mighty Wurlitzer” by STL personnel after its many pipes suggested a similarity to a famous UK pipe organ in the Tower Ballroom, Blackpool, UK. It is probably the most famous organ in the world.
163.
H.
Veenvliet
,
W. J.
Bartels
, and
C. v.
Opdorp
, “
VPE growth and analysis of GaAs–AlGaAsP double heterostructure laser structures
,”
presented at the 1978 IEEE International Semiconductor Laser Conference
,
San Francisco, CA
, 30 October–1 November (
IEEE
, New York,
1978
), Paper E3.
164.
H.
Veenvliet
,
C. V.
Opdorp
,
R. P.
Tuburg
, and
J.-P.
Andre
,
IEEE J. Quant. Electron.
15
,
762
(
1979
).
165.
E. J.
Thrush
,
P. R.
Selway
, and
G. D.
Henshall
,
Electron Lett.
15
,
156
(
1979
).
166.
J. P.
Duchemin
,
M.
Bonnet
,
F.
Koelsch
, and
D.
Huyghe
,
J. Electrochem. Soc.
126
,
1134
(
1979
).
167.
J. P.
Duchemin
,
J. Cryst. Growth
601
,
126939
(
2023
).
168.
J. P.
Duchemin
,
M.
Bonnet
,
G.
Beuchet
, and
F.
Koelsch
, “
Organometallic growth of device-quality InP by cracking of In(C2H5)3 and PH3 at low pressure
,” in
Gallium Arsenide and Related Compounds—1978 (ser. Inst. Phys. Conf. Ser. no. 45), edited by C. M. Wolfe
, Las Vegas, NV, September 1978 (
Institute of Physics
,
Bristol
,
1979
), Chap. 1, pp.
10
18
.
169.
J. P.
Hirtz
,
J. P.
Larivain
,
J. P.
Duchemin
, and
T. P.
Pearsall
,
Electron. Lett.
16
,
415
(
1980
).
170.
J. P.
Duchemin
,
J. P.
Hirtz
,
M.
Razeghi
,
M.
Bonnet
, and
A. S. D.
Hersee
,
J. Cryst. Growth
55
,
64
(
1981
).
171.
J. P.
Hirtz
,
J. P.
Duchemin
,
P.
Hirtz
,
B.
de Cremoux
, and
T.
Pearsall
,
Electron. Lett.
16
,
275
(
1980
).
172.
M.
Razeghi
,
S.
Hersee
,
P.
Hirtz
,
R.
Blondeau
,
B.
de Cremoux
, and
J. P.
Duchemin
,
Electron. Lett.
19
,
336
(
1983
).
173.
J.-P.
Duchemin
,
M.
Bonnet
, and
M.
Kolesch
,
J. Electrochem. Soc.
25
,
637
(
1978
).
174.
H.
Asahi
,
Y.
Kawamura
, and
H.
Nagai
,
J. Appl. Phys.
53
,
4928
(
1982
).
175.
H.
Asahi
,
Y.
Kawamura
,
H.
Nagai
, and
T.
Ikegami
,
Electron. Lett.
18
,
62
(
1982
).
176.
T.
Suzuki
,
I.
Hino
,
A.
Gomyo
, and
K.
Nishida
,
Jpn. J. Appl. Phys.
21
,
L731
(
1982
).
177.
I.
Hino
,
A.
Gomyo
,
K.
Kobayashi
,
T.
Suski
, and
K.
Yoshida
,
Appl. Phys. Lett.
43
,
987
(
1983
).
178.
M.
Ikeda
,
Y.
Mori
,
M.
Takiguchi
,
K.
Kaneko
, and
N.
Watanabe
,
Appl. Phys. Lett.
48
,
661
(
1984
).
179.
M.
Ishikawa
,
Y.
Ohba
,
H.
Sugawara
,
M.
Yamamoto
, and
T.
Nakansi
,
Electron. Lett.
21
,
1085
(
1985
).
180.
M.
Ikeda
,
Y.
Mori
,
H.
Sato
,
K.
Kaneko
, and
N.
Watanabe
,
Appl. Phys. Lett.
47
,
1027
(
1985
).
181.
M.
Ikeda
,
H.
Honda
,
Y.
Mori
,
K.
Kaneko
, and
N.
Watanabe
,
Appl. Phys. Lett.
45
,
964
(
1984
).
182.
J. B.
Mullin
and
S. J. C.
Irvine
,
J. Phys. D: Appl. Phys.
14
,
L149
(
1981
).
183.
K.
Hess
, private communication (August 1, 2023).
184.
NICMOS is also the name of the device’s 256 × 256-pixel Hg1-xCdxTe/sapphire imaging sensor built by Rockwell International Electro-Optical Center (now DRS Technologies). See: https://en.wikipedia.org/wiki/Near_Infrared_Camera_and_Multi-Object_Spectrometer (last accessed August 4, 2023).
185.
See: https://en.wikipedia.org/wiki/KH-11_KENNEN (last accessed August 12, 2023).
186.
The support from the Direction des Recherches, Etudes et Techniques (DRET) of the French Ministry of Defense, Semiconductors and Components Department and the Délégation Générale à la Recherche Scientifique et Technique (DGRST) of the French Sectariat d’Etat a la Recherche was organized by Mr. J.-F. Bonfils. See Preface to the Proceedings of the International Conference on Metalorganic Vapor Phase Epitaxy, J. Cryst. Growth 55, 1 (1981). North-Holland Publishing Co., Amsterdam.
187.
Napoleon I was born Napulione Buonaparte on August 15, 1769 at 1 rue Saint-Charles, Ajaccio, Corsica, Kingdom of France. This house is now a historical museum.
188.
Photograph from the Preface to the Proceedings of the International Conference on Metalorganic Vapor Phase Epitaxy [J. Cryst. Growth 55, 1 (1981)].
189.
See Preface to the Proceedings of the International Conference on Metalorganic Vapor Phase Epitaxy [J. Cryst. Growth 55, 1 (1981)].
190.
The development of advanced MOCVD reactors is discussed in detail in
C. A.
Wang
,
J. Cryst. Growth
506
,
190
(
2019
).
191.
Much of this and related work is summarized in
C. A.
Wang
,
IEEE J. Quant. Electron.
58
,
500011
(
2022
).
192.
C. A.
Wang
,
S. H.
Groves
,
S. C.
Palmateer
, and
D. W.
Weyburne
,
J. Cryst. Growth
77
,
136
(
1986
).
193.
C. A.
Wang
,
H. K.
Choi
, and
M. K.
Connors
,
IEEE Photon. Technol. Lett.
1
,
351
(
1989
).
194.
C. A.
Wang
,
H. K.
Choi
, and
M. K.
Connors
,
J. Cryst. Growth
18
,
695
(
1989
).
195.
C. A.
Wang
,
R. A.
Brown
, and
J. W.
Caunt
, “Vapor phase reactor for making multilayer structures,” U.S. patent 4,997,677 (5 March 1991).
196.
This MIT Lincoln Laboratory research was funded by the U.S. Air Force to develop AlGaAs-GaAs high-power LD arrays for pumping Nd-YAG lasers. A high uniformity of precise wavelength emission of large arrays of LDs was required, leading to the study of the flow dynamics in the MOCVD reactors. Wang shared a lot of her MOCVD reactor design information, and even samples of her stainless steel screen mesh with several people from various companies who were working on MOCVD reactor development. C. A. Wang, private communication (August 6, 2023).
197.
C. A.
Wang
,
S.
Patnaik
,
J. W.
Caunt
, and
R. A.
Brown
,
J. Cryst. Growth
93
,
228
(
1988
).
198.
K. F.
Jensen
,
D. I.
Fotiadas
, and
T. J.
Mountziaris
,
J. Cryst. Growth
101
,
1
(
1991
).
199.
M. E.
Coltrin
,
R. J.
Kee
, and
J.
Miller
,
J. Electrochem. Soc.
131
,
425
(
1984
).
200.
R. J.
Kee
,
G. H.
Evans
, and
M. E.
Coltrin
, “Chapter 18,” in American Chemical Society Symposium Series (ACS, Washington, DC,
1987
), Vol. 353, p. 334.
201.
Spire Corporation Model SPI-450 MOCVD reactor sales brochure.
202.
Taiyo Nippon Sanso website, see: https://www.mocvd.jp/en/profile/history/ (last accessed July 24, 2023).
203.
Hiroshi Amano, private communication (July 28, 2023).
204.
Photograph kindly supplied by Professor Hiroshi Amano. Original photograph taken in 1984 by Professor Kazumasa Hiramatsu.
205.
Drawing from Thomas Swan Epitor MOCVD equipment sales brochure, p. 19.
206.
Bhat licensed the Wang U.S. 4,997,677 patent and incorporated in his design some features of this rotating-disk stagnation-point-flow reactor. R.: Bhat, private communication (July 19–20, 2023).
207.
B. S.
Ahern
and
D. W.
Weyburne
, “Chemical vapor deposition method using an actively cooled effuser to coat a substrate having a heater surface layer,” U.S. patent 5,252,366 (12 October 1993): The patent filing was based on notebook entries beginning 1987.
208.
S. M.
Vernon
,
P. C.
Colter
,
D. D.
McNulty
,
S. J.
Hogan
,
D. W.
Weyburne
, and
B. S.
Ahern
,
Proceeding of the. International Conference on Indium Phosphide and Related Materials
, March 1994 (IEEE, New York,
1994
), Vol. 6, p. 137, Paper MP14.
209.
H. M.
Cox
,
J. Cryst. Growth
69
,
641
(
1984
).
210.
H.
Cox
,
S. G.
Hummel
, and
V. G.
Keramidas
,
J. Cryst. Growth
79
,
900
(
1986
).
211.
W.
Van Der Stricht
,
I.
Moerman
,
P.
Demeester
,
J. A.
Crawley
, and
E. J.
Thrush
,
MRS Internet J. Nitride Semicond. Res.
1
,
3
(
1996
).
212.
E. J.
Thrush
,
J. A.
Crawley
,
Y.
Van Der Stricht
,
I.
Moerman
,
L.
May
,
E.
Nicholls
, and
G.
Vergani
, “
MOCVD growth of GaN
,” in
IEE Colloquium on Wide Bandgap Semiconductor Light Emitters (Ref.: No.1996/233)
,
London
, October 1996 (IEE, London,
1996
), pp.
2/1
10
.
213.
Weyburne and Ahern started working on the CCS concept in 1987. See Ref. 6 in Ref. 179.
214.
D. W.
Weyburne
and
B. S.
Ahern
,
J. Cryst. Growth
170
,
77
(
1997
).
215.
M. A.
Heuken
,
Compd. Semicond. Mag.
26
,
August/September
(
2020
). See: www.compoundsemiconductor.net.
216.
M.
Heuken
, private communication (July 23, 2023).
217.
H.
Haspeklo
,
U.
König
,
M.
Heyen
, and
H.
Jürgensen
,
J. Cryst. Growth
77
,
79
(
1986
).
218.
M. A.
Heuken
, private communication (July 19, 2023).
219.
H.
Jergensen
and
M.
Heyen
, “Quartz glass reactor for MOCVD equipment,” German patent DE3721636A1 (1 December 1989).
220.
D.
Schmitz
,
G.
Strauch
,
J.
Knauf
,
H.
Jürgensen
, and
M.
Heyen
,
J. Cryst. Growth
93
,
312
(
1988
).
221.
Photograph from AIXTRON AIX 202 RD MOCVD reactor sales brochure.
222.
P. M.
Frijlink
,
J. Cryst. Growth
93
,
207
(
1988
).
223.
P. M.
Frijlink
, “Réacteur ďépitaxy à planétaire,” French patent FR2628984A1 (28 December 1990). Also “Epitaxial growth reactor with a planetary support,” U.S. patent 4,961,399 (9 October 1990).
224.
P. M.
Frijlink
, “Réacteur ďépitaxy à collecteur de gaz amélioré,” French patent FR2,638,020A1 (20 April 1990).
225.
The original name was Electronic Materials Corporation, EMCOR; but later they added the “E” at the end.
226.
N. E.
Schumaker
,
R. A.
Stall
,
W. R.
Wagner
, and
L. G.
Polgar
,
J. Metals
38
,
41
(
1986
).
227.
I.
Hayashi
,
M. B.
Panish
, P. W. Foy, and
S.
Sumski
,
Appl. Phys. Lett.
17
(3),
109
(
1970
).
228.
R. A.
Stall
,
J.
Zilko
,
V.
Swaminathan
, and
N.
Schumaker
,
J. Vac. Sci. Technol. B
3
,
524
(
1985
).
229.
R. A.
Stall
,
V.
Swaminathan
, and
N. E.
Schumaker
,
J. Vac. Sci. Technol. B
2
,
148
(
1984
).
230.
V.
Swaminathan
,
D. L.
Van Haren
,
J. L.
Zilko
,
P. Y.
Lu
, and
N. E.
Schumaker
,
J. Appl. Phys.
57
,
5349
(
1985
).
231.
Norman Schumaker had legally founded the Electronic Materials Corporation (later changed to EMCORE Corp.) in 1984 with R. A. Stall and W. R. Wagner, while they were still employed at Bell Labs. When the Bell Labs Intellectual Property lawyers saw this legal filing, they called Bell Labs security and Schumaker, Stall, and Wagner were “walked to the door” and terminated from employment that day.
232.
L. G.
Polgar
,
R. A.
Stall
, and
N. E.
Schumaker
,
Solid State Technol.
20
,
109
(
1987
).
233.
G. S.
Tompa
,
M. A.
McKee
,
C.
Beckham
,
P. A.
Zawadzki
,
J. M.
Colabella
,
P. D.
Reinhert
,
K.
Capuder
,
R. A.
Stall
, and
P. E.
Norris
,
J. Cryst. Growth
93
,
220
(
1988
).
234.
P.
Fabiano
, private communication (August 21, 2023).
235.
See: https://www.veeco.com/company/history/ (last accessed July 23, 2023).
236.
K. L.
Hess
,
P. D.
Dapkus
,
H. M.
Manasevit
,
T. S.
Low
,
B. J.
Skromme
, and
G. E.
Stillman
,
J. Electron. Mater.
11
,
1115
(
1982
).
237.
A. C.
Jones
,
J. Cryst. Growth
129
,
728
(
1993
).
238.
D. F.
Williams
,
Angew. Chem.
101
,
678
(
1989
).
239.
A. C.
Jones
,
A. K.
Holliday
,
D. J.
Cole-Hamilton
,
M. M.
Ahmad
, and
N. D.
Gerrard
,
J. Cryst. Growth
68
,
1
(
1984
).
240.
A. C.
Jones
,
Chemtronics
4(1),
15
(1989).
241.
J. F.
Barnes
,
B. R.
Holeman
, and
E. I.
Young
,
Philos. Trans. R. Soc. London, Ser. A
322
,
335
(
1987
).
242.
N. D.
Gerrard
,
D. J.
Nicolas
,
J. O.
Williams
, and
A. C.
Jones
,
Chemtronics
3
,
17
(
1988
).
243.
C. R.
Lewis
,
W. T.
Dietze
, and
M. J.
Ludowise
,
J. Electron. Mater.
12
,
507
(
1983
).
244.
H.
Amano
,
M.
Kito
,
K.
Hiramatsu
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
28
,
L2112
(
1989
).
245.
J. P.
Stagg
,
J.
Christer
,
E. J.
Thrush
, and
J.
Crawley
,
J. Crystal Growth
120
,
98
(
1992
).
246.
W.
Richter
,
P.
Kurpas
,
R.
Luckerath
, and
M.
Motzkus
,
J. Cryst. Growth
101
,
13
(
1991
).
247.
J.
Jonsson
,
F.
Reinhardt
,
K.
Ploska
,
M.
Zorn
,
W.
Richter
, and
J. T.
Zettler
, “
Real time monitoring of PH3 and AsH3 induced exchange reactions on GaAs, InGaAs and InP during MOVPE
,” in
Conference Proceeding of the Sixth International Conference on Indium Phosphide and Related Materials
, Santa Barbara, CA, March 1994 (IEEE, New York,
1994
), pp.
53
56
.
248.
D. E.
Aspnes
,
Appl. Surf. Sci.
22/23
,
792
(
1985
).
249.
E.
Colas
,
D. E.
Aspnes
,
R.
Bhat
,
A. A.
Studna
,
J. P.
Harbison
,
L. T.
Florez
,
M. A.
Koza
, and
V. G.
Keramidas
,
J. Cryst. Growth
107
,
47
(
1991
).
250.
See: https://www.laytec.de/home (last accessed July 25, 2023).
251.
J. T.
Zettler
, private communication (July 25, 2023).
252.
H.
Sankur
,
W.
Southwell
, and
R.
Hall
,
J. Electron. Mater.
20
,
1099
(
1991
).
253.
M.
Troccoli
,
D.
Bour
,
S.
Corzine
,
G.
Hofler
,
A.
Tandon
,
D.
Mars
,
D. J.
Smith
,
L.
Diehl
, and
F.
Capasso
,
Appl. Phys. Lett.
85
,
5842
(
2004
).
254.
C. A.
Wang
et al,
IEEE J. Sel. Top. Quant. Electron.
23
,
1200413
(
2017
).
255.
S. J. C.
Irvine
and
J. B.
Mullin
,
J. Cryst. Growth
55
,
107
(
1981
).
256.
Y.
Arakawa
,
Y.
Nagamune
,
M.
Nishioka
, and
S.
Tsukamoto
,
Semicond. Sci. Technol.
8
,
1082
(
1993
).
257.
L.
Samuelson
et al,
Physica E
25
,
313
(
2004
).
258.
M.
Akiyama
,
Y.
Kawarada
, and
K.
Kaminishi
,
J. Cryst. Growth
68
,
21
(
1984
).
259.
K. M.
Lau
,
Y.
Xue
,
Y.
Han
, and
Z.
Yan
, “
III-V micro/nano-lasers and photodetectors in the telecom band grown on SOI
,” in
2022 Optical Fiber Communication Conference and Exhibition
, San Diego, CA, March 2022 (IEEE, New York,
2022
), p.
3
, Paper M4D.4.
260.
Q.
Lin
,
J.
Huang
,
L.
Lin
,
W.
Luo
,
W.
Gu
, and
K. M.
Lau
,
Opt. Express
31
,
15326
(
2023
).
261.
A.
Strittmatter
,
A.
Krost
,
K.
Schatke
,
D.
Bimberg
,
J.
Blasing
, and
J.
Christen
,
Mater. Sci. Forum
264–268
,
1145
(
1998
).
262.
A.
Dadgar
,
T.
Hempel
,
J.
Blasing
,
O.
Schulz
,
S.
Fritze
,
J.
Christen
, and
A.
Krost
,
Phys. Status Solidi C
8
,
1503
(
2011
).
263.
A.
Watanabe
,
T.
Takeuchi
,
K.
Hirosawa
,
H.
Amano
,
K.
Hiramatsu
, and
I.
Akasaki
,
J. Cryst. Growth
128
,
391
(
1993
).
264.
J. I.
Davies
,
A. D.
Johnson
,
R. I.
Pelzel
,
M. D.
Geen
,
A. M.
Joel
, and
S. W.
Lim
,
J. Cryst. Growth
604
,
127031
(
2023
).
265.
H.
Amano
et al,
J. Phys. D: Appl. Phys.
53
,
503001
(
2020
).
266.
M.
Kneissl
,
T.-Y.
Seong
,
J.
Han
, and
H.
Amano
,
Nat. Photon.
13
,
213
(
2019
).
267.
S. P.
Najda
et al,
Electronics
11
,
1430
(
2022
).
268.
M. A.
Khan
,
J. M.
Van Hove
,
J. N.
Kuznia
, and
D. T.
Olson
,
Appl. Phys. Lett.
58
,
2408
(
1991
).
269.
F. A.
Kish
et al,
IEEE J. Sel. Top. Quant. Electron.
17
,
1470
(
2011
).
270.
H.
Amano
,
N.
Sawaki
,
I.
Akasaki
, and
Y.
Toyoda
,
Appl. Phys. Lett.
48
,
353
(
1986
).
271.
H.
Amano
,
T.
Asahi
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
29
,
L205
(
1990
), Pt. 2.
272.
S.
Nakamura
,
M.
Senoh
, and
T.
Mukai
,
Jpn. J. Appl. Phys.
30
,
L1708
(
1991
), Pt. 2.
273.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys.
31
,
L139
(
1992
), Pt. 2.
274.
S.
Nakamura
,
T.
Mukai
, and
M.
Senoh
,
Jpn. J. Appl. Phys.
30
,
L1998
(
1991
), Pt. 2.
275.
Z.
Zhang
,
M.
Kushimoto
,
T.
Sakai
,
N.
Sugiyama
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
,
Appl. Phys. Exp.
12
,
124003
(
2019
).
276.
Z.
Zhang
,
M.
Kushimoto
,
A.
Yoshikawa
,
K.
Aoto
,
L. J.
Schowalter
,
C.
Sasaoka
, and
H.
Amano
,
Appl. Phys. Exp.
15
,
041007
(
2022
).
277.
G. B.
Stringfellow
,
Organometallic Vapor-Phase Epitaxy: Theory and Practice
(
Academic
,
San Diego
,
CA
,
1989
).
278.
G. B.
Stringfellow
,
Organometallic Vapor-Phase Epitaxy: Theory and Practice
,
2nd ed.
(
Academic
,
San Diego
,
CA
,
1999
).
279.
R. M.
Biefeld
,
D. D.
Koleske
, and
J. G.
Cederberg
, “
The science and practice of metal-organic vapor phase epitaxy (MOVPE)
,” in
Handbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques)
(
Elsevier
, Amsterdam, The Netherlands,
2015
), pp.
69
160
. See: http://dx.doi.org/10.1016/B978-0-444-63304-0.00003-2 (last accessed July 24, 2023).
280.
A. C.
Jones
and
M. L.
Hitchman
, “
Overview of chemical vapour deposition
,” in
Chemical Vapour Deposition Precursors, Processes and Applications
, edited by
A. C.
Jones
and
M. L.
Hitchman
(
Royal Society of Chemistry
, London,
2009
), pp.
1
36
.
You do not currently have access to this content.