Scattering-type scanning near-field optical microscopy based on adiabatic nanofocusing of surface plasmon polaritons (SPPs) is a powerful technique that can achieve free-background nanoscale optical resolution of material. However, the performance of the propagated confined modes strongly depends on the characteristic structure of the probe. Although the metallic pyramid structure provides excellent tightly confined modes, however, it is challenging to realize the required pyramid geometry. Here, we propose a simple method for fabricating a reproducible and controllable gold pyramid-shaped tip. The produced pyramid-shaped tips were made by electrochemical etching and by applying a pulse wave to the system. From a systematic study, we found that the key factor of fabrication of desired tip geometry is based on the platinum (Pt) wire shapes. Traditional circular-shaped platinum ring electrodes are used for gold tip fabrication in an electrochemical etching. In our method, we bent the Pt wire into a triangular shape as the electrode for the etching process. The influence of the geometrical ring shapes on the fabrication of the Au tip structure is investigated. The gold tip structure was optimized by controlling the Pt ring shape, and the desired pyramid-shaped gold tip was achieved with a yield of 70%. The obtained etched pyramid-shaped tips were then mounted along the side of one of the arms of a quartz tuning fork force sensor to test their performance for shear-force topographical image and for guiding SPPs along the pyramid wedge based on adiabatic nanofocusing microscopy. The result shows topographical images of indium tin oxide with a spatial resolution smaller than 20 nm. Furthermore, we experimentally demonstrate the generation of the SPPs that propagated adiabatically along the wedge of an appropriate fabricated pyramid-shaped tip toward a nanometer-size spot at the tip apex. The demonstration of this method strongly suggests that the obtained pyramid-shaped tip will enable new experiments probing the dynamics of optical excitations of individual metallic, semiconducting, and magnetic nanostructures.
Skip Nav Destination
Article navigation
September 2023
Research Article|
August 03 2023
Fabrication of pyramid-shaped gold tip for adiabatic nanofocusing of surface plasmon polaritons
Jamal Kheiro Khalaf
;
Jamal Kheiro Khalaf
a)
(Investigation, Methodology, Writing – review & editing)
Department of Physics, Faculty of Science, Centre for Material Science and Nanotechnology (CMSN), University of Zakho
, Kurdistan Region 42002, Iraq
Search for other works by this author on:
Diyar Sadiq
Diyar Sadiq
(Investigation, Methodology, Supervision, Writing – review & editing)
Department of Physics, Faculty of Science, Centre for Material Science and Nanotechnology (CMSN), University of Zakho
, Kurdistan Region 42002, Iraq
Search for other works by this author on:
a)
Electronic mail: jamal.khalaf@staff.uoz.edu.krd
J. Vac. Sci. Technol. B 41, 054201 (2023)
Article history
Received:
April 08 2023
Accepted:
June 13 2023
Citation
Jamal Kheiro Khalaf, Diyar Sadiq; Fabrication of pyramid-shaped gold tip for adiabatic nanofocusing of surface plasmon polaritons. J. Vac. Sci. Technol. B 1 September 2023; 41 (5): 054201. https://doi.org/10.1116/6.0002505
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
158
Views
Citing articles via
Related Content
The Nanofocus Endstation of the MINAXS Beamline of PETRA III
AIP Conference Proceedings (June 2010)
X‐Ray Nanofocus CT: Visualising Of Internal 3D‐Structures With Submicrometer Resolution
AIP Conference Proceedings (September 2008)
Nanofocus of tenth of joules and a portable plasma focus of few joules for field applications
AIP Conference Proceedings (January 2009)
An Ultra Miniature Pinch Focus Discharge Operating With Submillimetric Anodes And Energy Of 0.1 Joule: Nanofocus
AIP Conference Proceedings (January 2006)
Repetitive Nanofocus: Evidence of neutron and x‐ray emission from an ultra miniature pinch plasma focus discharge operating at tens of Hz
AIP Conference Proceedings (April 2008)