In this work, we study the thermal evolution of the optical and electrical features of an InN thin film. By correlating photoluminescence (PL) and Hall effect results, we determine the appropriate values of the correlation parameter to be used in the empirical power law that associates the electron concentration with the linewidth of the PL spectrum, in the scope of the Burstein–Moss effect across a wide range of temperatures. Additionally, by associating Raman and PL results, we observe the thermally induced compressive strain widening of the bandgap of the InN film. Our findings demonstrate the reliability of optical methods in providing contactless measurements of electrical and structural features of semiconductors.
REFERENCES
1.
X.-H.
Li
, Y.-X.
Guo
, Y.
Ren
, J.-J.
Peng
, J.-S.
Liu
, C.
Wang
, and H.
Zhang
, Front. Phys.
17
, 13304
(2022
). 2.
T. D.
Veal
, C. F.
McConville
, and W. J.
Schaff
, Indium Nitride and Related Alloys
(CRC
, Boca Raton, FL, 2011
). 3.
N.
Syed
et al, ACS Nano
16
, 5476
(2022
). 4.
C. G.
Van de Walle
and D.
Segev
, J. Appl. Phys.
101
, 081704
(2007
). 5.
S.-C.
Lin
et al, Appl. Phys. Express
5
, 031003
(2012
). 6.
D. N.
Lobanov
, A. V.
Novikov
, B. A.
Andreev
, P. A.
Bushuykin
, P. A.
Yunin
, E. V.
Skorohodov
, and L. V.
Krasilnikova
, Semiconductors
50
, 261
(2016
). 7.
F. M.
Oliveira
, A. V.
Kuchuk
, P. M.
Lytvyn
, C.
Romanitan
, H. V.
Stanchu
, M. D.
Teodoro
, M. E.
Ware
, Y. I.
Mazur
, and G. J.
Salamo
, ACS Appl. Nano Mater.
6
, 7582
(2023
). 8.
K. S. A.
Butcher
, H.
Hirshy
, R. M.
Perks
, M.
Wintrebert-Fouquet
, and P. P.-T.
Chen
, Phys. Status Solidi A
203
, 66
(2006
). 9.
M.
Moret
, S.
Ruffenach
, O.
Briot
, and B.
Gil
, Appl. Phys. Lett.
95
, 031910
(2009
). 10.
R. M.
Sieg
and S. A.
Ringel
, J. Appl. Phys.
80
, 448
(1996
). 11.
S. P.
Fu
, T. T.
Chen
, and Y. F.
Chen
, Semicond. Sci. Technol.
21
, 244
(2006
). 12.
B.
Arnaudov
et al, Phys. Rev. B
69
, 115216
(2004
). 13.
P.-C.
Wei
et al, Opt. Express
17
, 11690
(2009
). 14.
H. V.
Stanchu
, A. V.
Kuchuk
, P. M.
Lytvyn
, Y. I.
Mazur
, M. E.
Ware
, Y.
Maidaniuk
, M.
Benamara
, Z. M.
Wang
, and G. J.
Salamo
, CrystEngComm
20
, 1499
(2018
). 15.
S.
Birner
, T.
Zibold
, T.
Andlauer
, T.
Kubis
, M.
Sabathil
, A.
Trellakis
, and P.
Vogl
, IEEE Trans. Electron Devices
54
, 2137
(2007
). 16.
T. D.
Veal
, L. F. J.
Piper
, W. J.
Schaff
, and C. F.
McConville
, J. Cryst. Growth
288
, 268
(2006
). 17.
W.
Liu
, R. J. N.
Tan
, C. B.
Soh
, and S. J.
Chua
, Appl. Phys. Lett.
97
, 042110
(2010
). 18.
P. D. C.
King
, T. D.
Veal
, and C. F.
McConville
, J. Phys.: Condens. Matter
21
, 174201
(2009
). 19.
A.
Mekys
, J.
Jurkevičius
, A.
Kadys
, M.
Kolenda
, V.
Kovalevskij
, and G.
Tamulaitis
, Thin Solid Films
692
, 137619
(2019
). 20.
L.
Hsu
, R. E.
Jones
, S. X.
Li
, K. M.
Yu
, and W.
Walukiewicz
, J. Appl. Phys.
102
, 073705
(2007
). 21.
J. S.
Thakur
, D.
Haddad
, V. M.
Naik
, R.
Naik
, G. W.
Auner
, H.
Lu
, and W. J.
Schaff
, Phys. Rev. B
71
, 115203
(2005
). 22.
E. O.
Schäfer-Nolte
, T.
Stoica
, T.
Gotschke
, F. A.
Limbach
, E.
Sutter
, P.
Sutter
, D.
Grützmacher
, and R.
Calarco
, Nanotechnology
21
, 315702
(2010
). 23.
S.
Lazić
, E.
Gallardo
, J. M.
Calleja
, F.
Agulló-Rueda
, J.
Grandal
, M. A.
Sánchez-Garcia
, E.
Calleja
, E.
Luna
, and A.
Trampert
, Phys. Rev. B
76
, 205319
(2007
). 24.
J.
Wu
, W.
Walukiewicz
, K. M.
Yu
, J. W.
Ager III
, E. E.
Haller
, H.
Lu
, W. J.
Schaff
, Y.
Saito
, and Y.
Nanishi
, Appl. Phys. Lett.
80
, 3967
(2002
). 25.
X. D.
Pu
, J.
Chen
, W. Z.
Shen
, H.
Ogawa
, and Q. X.
Guo
, J. Appl. Phys.
98
, 033527
(2005
). 26.
A. V.
Kuchuk
, F. M.
de Oliveira
, P. K.
Ghosh
, Y. I.
Mazur
, H. V.
Stanchu
, M. D.
Teodoro
, M. E.
Ware
, and G. J.
Salamo
, Nano Res.
15
, 2405
(2021
). 27.
F. M.
Morales
, J. M.
Mánuel
, R.
García
, B.
Reuters
, H.
Kalisch
, and A.
Vescan
, J. Phys. D: Appl. Phys.
46
, 245502
(2013
). 28.
V.
Cimalla
et al, Phys. Status Solidi C
0
, 2818
(2003
). 29.
C. X.
Ren
, Mater. Sci. Technol.
32
, 418
(2016
). 30.
S. X.
Li
, J.
Wu
, E. E.
Haller
, W.
Walukiewicz
, W.
Shan
, H.
Lu
, and W. J.
Schaff
, Appl. Phys. Lett.
83
, 4963
(2003
). 31.
Q.
Yan
, P.
Rinke
, M.
Scheffler
, and C. G.
Van de Walle
, Appl. Phys. Lett.
97
, 181102
(2010
). 32.
M. K.
Mahata
, S.
Ghosh
, S. K.
Jana
, A.
Chakraborty
, A.
Bag
, P.
Mukhopadhyay
, R.
Kumar
, and D.
Biswas
, AIP Adv.
4
, 117120
(2014
). 33.
G.
Gonzalez De La Cruz
, A.
Calderon Arenas
, and H.
Herrera
, J. Appl. Phys.
98
, 023501
(2005
). 34.
V. Y.
Davydov
et al, Phys. Status Solidi B
230
, R4
(2002
). 35.
E.
Ugur
, M.
Ledinský
, T. G.
Allen
, J.
Holovský
, A.
Vlk
, and S.
De Wolf
, J. Phys. Chem. Lett.
13
, 7702
(2022
). 36.
E.
Baron
, R.
Goldhahn
, M.
Deppe
, D. J.
As
, and M.
Feneberg
, Phys. Status Solidi B
257
, 1900522
(2020
). 37.
O.
Svelto
and D. C.
Hanna
, Principles of Lasers (Vol. 1)
(Springer
, New York
, 2010
). 38.
L. A.
Coldren
, S. W.
Corzine
, and M. L.
Mašanović
, “Appendix two: Relationships between Fermi energy and carrier density and leakage
,” in Diode Lasers and Photonic Integrated Circuits
(Wiley.
, New York
, 2012
), pp. 529
–544
. 39.
I.
Vurgaftman
and J. R.
Meyer
, J. Appl. Phys.
94
, 3675
(2003
). 40.
Y.-L.
Chang
, Z.
Mi
, and F.
Li
, Adv. Funct. Mater.
20
, 4146
(2010
). 2023 Published under an exclusive license by the AVS.
2023
Author(s)
You do not currently have access to this content.