An electron energy analyzer based on the retarding electrostatic field generated by a cavity electrode was prototyped, where the designed energy resolution is smaller than 10 meV at acceleration voltages Vo less than 5 kV and a half angle spread θo less than 20 mrad for the incident electron beams with the scanning voltage range of 3 V. Precise energy resolution, however, has not been recognized experimentally because of the difficulties of equipping such a narrow energy spread electron source. This paper describes the principle of the newly developed energy analyzer and shows the obtained energy spectra from a Schottky emitter ZrO/W(100) with a tip of the curvature radius of 1.5 μm, which could highly reproduce the theoretically expected spectra at various emitter temperatures because of its predominantly thermal emission.

1.
B.
Wannberg
,
U.
Gelius
, and
K.
Siegbahn
,
J. Phys. E
7
,
149
(
1974
).
2.
H.
Adachi
,
M.
Sase
,
S.
Zaima
, and
Y.
Shibata
,
J. Phys. D: Appl. Phys.
14
,
769
(
1981
).
3.
J. A.
Simpson
,
Rev. Sci. Instrum.
32
,
1283
(
1961
).
4.
J. A.
Simpson
and
L.
Marton
,
Rev. Sci. Instrum.
32
,
802
(
1961
).
5.
A. B.
EL-Kareh
and J. C. J. EL-Kareh, Electron Beams, Lenses, and Optics (Academic Press, New York and London, 1970), p. 41.
6.
M.
Kato
, “
Theory and design of energy analysing systems for electron spectroscopy
,”
Ph.D. dissertation
(
Tokyo University
,
1997
).
7.
K. L.
Jensen
,
D.
Finkenstadt
,
D. A.
Shiffler
,
A.
Shabaev
,
S. G.
Lambrakos
,
N. A.
Moody
, and
J. J.
Petillo
,
J. Appl. Phys.
123
,
065301
(
2018
).
9.
J.
Fransen
, “
Towards high-brightness, monochromatic electron sources
,” Ph.D. dissertation (
Delft University of Technology
,
2009
).
10.
See supplementary material online for the derived Schottky plot from the ZrO/W(100) emitter.
11.
M. S.
Bronsgeest
,
J. E.
Barth
,
G. A.
Schwind
,
L. W.
Swanson
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
25
,
2049
(
2007
).

Supplementary Material

You do not currently have access to this content.