Radiation susceptibility of electronics has always been about probing electrical properties in either transient or time-accumulated phenomena. As the size and complexity of electronic chips or systems increase, detection of the most vulnerable regions becomes more time consuming and challenging. In this study, we hypothesize that localized mechanical stress, if overlapping electrically sensitive regions, can make electronic devices more susceptible to radiation. Accordingly, we develop an indirect technique to map mechanical and electrical hotspots to identify radiation-susceptible regions of the operational amplifier AD844 to ionizing radiation. Mechanical susceptibility is measured using pulsed thermal phase analysis via lock-in thermography and electrical biasing is used to identify electrically relevant regions. A composite score of electrical and mechanical sensitivity was constructed to serve as a metric for ionizing radiation susceptibility. Experimental results, compared against the literature, indicate effectiveness of the new technique in the rapid detection of radiation-vulnerable regions. The findings could be attractive for larger systems, for which traditional analysis would take —two to three orders of magnitude more time to complete. However, the indirect nature of the technique makes the study more approximate and in need for more consistency and validation efforts.

1.
S.
Gerardin
and
M.
Bagatin
,
Ionizing Radiation Effects in Electronics
(
CRC
,
Boca Raton
,
2016
).
2.
B.
Beeler
,
M.
Asta
,
P.
Hosemann
, and
N.
Grønbech-Jensen
,
J. Nucl. Mater.
459
,
159
(
2015
).
3.
G. F.
Knoll
,
Radiation Detection and Measurement
,
4th ed.
(
Wiley
,
Hoboken
,
NJ
,
2010
).
4.
R. N. S.
Raphael
et al, in
Proceedings of the 3rd Brazilian Technology Symposium
(Springer Nature, Switzerland,
2019
), pp.
223
238
.
5.
M.
Bagatin
and
S.
Gerardin
,
Ionizing Radiation Effects in Electronics from Memories to Imagers
(
CRC
,
Boca Raton
,
2018
).
7.
H. J.
Barnaby
,
M. l.
Mclain
, and
I. S.
Esqueda
,
Nucl. Instrum. Methods Phys. Res. Sec. B: Beam Interact. Mater. Atoms
,
261
,
1142
1145
(
2007
).
8.
C.
Gu
,
R.
Chen
,
G.
Belev
,
S.
Shi
,
H.
Tian
,
I.
Nofal
, and
L.
Chen
,
Materials
12
,
3411
(
2019
).
9.
Y.-T.
Yu
,
J.-W.
Han
,
G.-Q.
Feng
,
M.-H.
Cai
, and
R.
Chen
,
IEEE Trans. Nucl. Sci.
62
,
565
(
2015
).
10.
F.
Miller
et al., "
Laser Mapping of SRAM Sensitive Cells: A Way to Obtain Input Parameters for DASIE Calculation Code
," in
IEEE Transactions on Nuclear Science
(
IEEE
,
2006
), Vol.
53
, No.
4
, pp.
1863
1870
.
11.
A. M.
Chugg
,
A. J.
Burnell
,
M. J.
Moutrie
,
R.
Jones
, and
R.
Harboe-Sorensen
,
IEEE Trans. Nucl. Sci.
54
,
2106
(
2007
).
12.
V.
Pouget
,
H.
Lapuyade
,
D.
Lewis
,
Y.
Deval
,
P.
Fouillat
, and
L.
Sarger
, "
SPICE modeling of the transient response of irradiated MOSFETs
," in
IEEE Transactions on Nuclear Science
(IEEE,
2000
), Vol.
47
, No.
3
, pp.
508
513
.
13.
D.
McMorrow
,
W. T.
Lotshaw
,
J. S.
Melinger
,
S.
Buchner
,
Y.
Boulghassoul
,
L. W.
Massengill
, and
R. L.
Pease
,
IEEE Trans. Nucl. Sci.
50
,
2199
(
2003
).
14.
F. R.
Palomo
,
J. M.
Mogollon
,
J.
Napoles
, and
M. A.
Aguirre
, "
Mixed-Mode Simulation of Bit-Flip With Pulsed Laser
," in
IEEE Transactions on Nuclear Science
(IEEE,
2010
), Vol.
57
, No.
4
, pp.
1884
1891
.
15.
P. E.
Dodd
et al,
IEEE Trans. Nucl. Sci.
54
,
2303
(
2007
).
16.
D.
Aktah
and
I.
Frank
,
J. Am. Chem. Soc.
124
,
3402
(
2002
).
17.
S.
Garcia-Manyes
and
A. E. M.
Beedle
,
Nat. Rev. Chem.
1
,
11
(
2017
).
18.
M. C.
Sequeira
,
F.
Djurabekova
,
K.
Nordlund
,
J.-G.
Mattei
,
I.
Monnet
,
C.
Grygiel
,
E.
Alves
, and
K.
Lorenz
,
Small
18
,
2102235
(
2022
).
19.
S. P.
Stepanoff
,
M. A. J.
Rasel
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
11
,
085008
(
2022
).
20.
Y.
Sun
,
S. E.
Thompson
, and
T.
Nishida
,
Strain Effect in Semiconductors
(
Springer US
,
Boston
,
MA
,
2010
).
21.
B.
Ghyselen
et al,
Solid State Electron.
48
,
1285
(
2004
).
22.
M. A. J.
Rasel
,
S.
Stepanoff
,
A.
Haque
,
D. E.
Wolfe
,
F.
Ren
, and
S.
Pearton
,
Phys. Status Solidi RRL
16
,
2200171
(
2022
).
23.
M.
Gaillardin
,
S.
Girard
,
Y.
Ouerdane
,
A.
Boukenter
,
F.
Andrieu
,
C.
Tabone
, and
O.
Faynot
,
J. Non-Cryst. Solids
357
,
1989
(
2011
).
24.
M.
Gaillardin
et al,
IEEE Trans. Nucl. Sci.
61
,
1628
(
2014
).
25.
C.
Gu
,
D.
Hiemstra
,
V.
Kirischian
, and
L.
Chen
, "
Single Event Transients Detection in AD844 Operational Amplifier by Utilizing Ultra-fast Pulsed Laser System
," in
2020 IEEE Radiation Effects Data Workshop (in conjunction with 2020 NSREC)
, Santa Fe, NM (IEEE,
2020
), pp.
1
6
.
26.
C.
Gu
, “
Study of single event effects by ultra-fast pulsed laser system
,”
Doctoral thesis
(
University of Saskatchewan
,
2020
).
27.
O.
Breitenstein
,
W.
Warta
, and
M. C.
Schubert
,
Lock-in Thermography Basics and Use for Evaluating Electronic Devices and Materials
,
3rd ed.
(
Springer
,
Berlin
,
2018
), p.
10
.
You do not currently have access to this content.