Considerable progress has been made in the last few years in removing white noise from visible–near-ultraviolet (UV/VIS) spectra while leaving information intact. For x-ray diffraction, the challenges are different: detecting and locating peaks rather than line shape analysis. Here, we investigate possibilities of state-of-the-art UV/VIS methods for noise reduction, peak detection, and peak location applied to x-ray diffraction data, in this case, data for a ZrO2 −33 mol. % TaO4 ceramic. The same advantages seen in UV/VIS spectroscopy are found here as well.

1.
L.
Rabiner
,
B.
Gold
, and
C.
McGonegal
,
IEEE Trans. Audio Electroacoust.
18
,
83
(
1970
).
2.
J. F.
Kaiser
and
W. A.
Reed
,
Rev. Sci. Instrum.
48
,
1447
(
1977
).
3.
P.
Marchand
and
L.
Marmet
,
Rev. Sci. Instrum.
54
,
1034
(
1983
).
4.
D. K.
Hoffman
,
D. J.
Kouri
, and
E.
Pollak
,
Comput. Phys. Commun.
147
,
759
(
2002
).
5.
M.
Numada
,
T.
Nomura
,
K.
Yanagi
,
K.
Kamiya
, and
H.
Tashiro
,
Precis. Eng.
31
,
234
(
2007
).
6.
D. E.
Aspnes
,
V. L.
Le
, and
Y. D.
Kim
,
J. Vac. Sci. Technol. B
37
,
051205
(
2019
).
7.
V. L.
Le
,
T. J.
Kim
,
Y. D.
Kim
, and
D. E.
Aspnes
,
J. Vac. Sci. Technol. B
37
,
052903
(
2019
).
8.
L. V.
Le
,
Y. D.
Kim
, and
D. E.
Aspnes
,
Thin Solid Films
761
,
139515
(
2022
).
9.
J. P.
Burg
, “Maximum Entropy Spectral Analysis,” Ph.D. thesis (Department of Geophysics, Stanford University,
1975
).
10.
L. V.
Le
,
T. J.
Kim
,
Y. D.
Kim
, and
D. E.
Aspnes
,
J. Appl. Phys.
129
,
224902
(
2021
).
11.
L. V.
Le
,
Y. D.
Kim
, and
D. E.
Aspnes
,
J. Appl. Phys.
132
,
074903
(
2022
).
12.
L. V.
Le
,
T. J.
Kim
,
Y. D.
Kim
, and
D. E.
Aspnes
,
Phys. Status Solidi B
260
(
5
),
2200271
(
2023
).
13.
L.
Pan
,
P.
Pipitsunthonsan
,
P.
Zhang
,
C.
Daengngam
,
A.
Booranawong
, and
M.
Chongcheawchamnan
,
in 2020 13th International Symposium on Computational Intelligence and Design
, Hangzhou, China, 12–13 December, 2020 (IEEE, New York,
2020
), pp.
159
163
.
14.
S. D.
Yoo
and
D. E.
Aspnes
,
J. Appl. Phys.
89
,
8183
(
2001
).
15.
S.
Butterworth
,
Exp. Wirel. Wirel. Eng.
7
,
536
(
1930
).
16.
D.
Gabor
,
J. Inst. Electr. Eng. Part I Gen.
94
,
58
(
1946
).
17.
M.
Gurak
,
Q.
Flamant
,
L.
Laversenne
, and
D. R.
Clarke
,
J. Eur. Ceram. Soc.
38
,
3317
(
2018
).
18.
M.
Stéphane
, in A Wavelet Tour of Signal Processing, edited by M.B.T.-A.W.T., 3rd ed. (Academic, Boston, MA, 2009), pp. 89–153.
19.
M. H.
Mendenhall
,
A.
Henins
,
L. T.
Hudson
,
C. I.
Szabo
,
D.
Windover
, and
J. P.
Cline
,
J. Phys. B: At., Mol. Opt. Phys.
50
,
115004
(
2017
).
20.
L. V.
Le
,
T. J.
Kim
,
Y. D.
Kim
, and
D. E.
Aspnes
,
Entropy
24
,
1238
(
2022
).
21.
See the supplementary material online for the MATLAB program for performing Gauss–Hermite filtering, which was used for Figs. 2–4. MATLAB programs for performing CME calculations and generalized CME (GME) calculations for spectra involving the dispersion curve.

Supplementary Material

You do not currently have access to this content.