It is relatively easy to obtain highly oriented/textured Ba(ZrxTi1–x)O3 (BZT) films by magnetron sputtering, but it is complicated to control the composition of these sputtered oriented films. Here, a series of BZT ceramic targets with different ingredients (x = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) and a BaTiO3 (x = 0) target were fabricated by solid-state sintering. Then, the corresponding BZT thin films were deposited on LaNiO3 (LNO) buffered Pt/Ti/(001)Si substrates adopting radio-frequency magnetron sputtering. Benefit from the prefabricated (001)-LNO buffer layer and optimized BZT film preparation process, all BZT films exhibit highly (00l) preferred orientation. However, the degree of orientation, lattice parameter, dielectric properties, ferroelectric behaviors, and energy-storage characteristics are all highly dependent on the Zr content of BZT films sputtered by targets with the same composition. (00l)-oriented BZT films with relatively low Zr content have a better crystalline structure [narrower full width at half maximum (FWHM), larger grains]. It is also found that the rising of the Zr content in (00l)-oriented BZT films will result in a larger out-of-plane lattice parameter, and these results indicate that the doping amount of Zr will strongly change the heterointerface stress/strain states and the growth mode of the oriented films, and then effectively tailor their electric performances.

1.
A. A.
Instan
,
K. K.
Mishra
, and
R. S.
Katiyar
,
J. Appl. Phys.
126
,
134101
(
2019
).
2.
H. R.
Zheng
,
L. X.
Li
,
S. H.
Yu
,
S.
Zheng
, and
S. L.
Chen
,
Ceram. Int.
43
,
13154
(
2017
).
3.
X. G.
Tang
,
J.
Wang
,
X. X.
Wang
, and
H. L. W.
Chan
,
Solid State Commun.
131
,
163
(
2004
).
4.
H. J.
Ye
,
X. S.
Qian
,
D. Y.
Jeong
,
S. J.
Zhang
,
Y.
Zhou
,
W. Z.
Shao
,
L.
Zhen
, and
Q. M.
Zhang
,
Appl. Phys. Lett.
105
,
152908
(
2014
).
5.
T. B.
Wu
,
C. M.
Wu
, and
M. L.
Chen
,
Appl. Phys. Lett.
69
,
2659
(
1996
).
6.
N.
Binhayeeniyi
,
P.
Sukwisute
,
S.
Nawae
, and
N.
Muensit
,
Materials
13
,
315
(
2020
).
7.
X. D.
Jian
et al,
ACS Appl. Mater. Interfaces
10
,
4801
(
2018
).
8.
J. L.
Peng
,
D. L.
Shan
,
Y. Y.
Liu
,
K.
Pan
,
C. H.
Lei
,
N. B.
He
,
Z. Y.
Zhang
, and
Q.
Yang
,
npj Comput. Mater.
4
,
66
(
2018
).
9.
Z.
Yu
,
C.
Ang
,
R.
Guo
, and
A. S.
Bhalla
,
J. Appl. Phys.
92
,
1489
(
2002
).
10.
P. A.
Jha
and
A. K.
Jha
,
J. Mater. Sci. Mater. Electron.
24
,
1511
(
2013
).
11.
Z. X.
Sun
,
Y. P.
Pu
,
Z. J.
Dong
,
Y.
Hu
,
X. Y.
Liu
, and
P. K.
Wang
,
Ceram. Int.
40
,
3589
(
2014
).
12.
W.
Cai
,
C. L.
Fu
,
J. C.
Gao
, and
H. Q.
Chen
,
J. Alloys Compd.
480
,
870
(
2009
).
13.
T.
Maiti
,
R.
Guo
, and
A. S.
Bhalla
,
J. Am. Ceram. Soc.
91
,
1769
(
2008
).
14.
D.
Hennings
,
A.
Schnell
, and
G.
Simon
,
J. Am. Ceram. Soc.
65
,
539
(
1982
).
15.
A.
Dixit
,
S. B.
Majumder
,
P. S.
Dobal
,
R. S.
Katiyar
, and
A. S.
Bhalla
,
Thin Solid Films
447–448
,
284
(
2004
).
16.
J.
Ventura
,
S.
Hernández
,
M. C.
Polo
,
C.
Ferrater
,
L.
Fàbrega
, and
M.
Varela
,
Appl. Surf. Sci.
424
,
374
(
2017
).
17.
T.
Ohno
,
K.
Uchida
, and
N.
Sakamoto
,
Jpn. J. Appl. Phys.
49
,
09MA11
(
2010
).
18.
C.
Gao
,
J. W.
Zhai
, and
X.
Yao
,
Integr. Ferroelectr.
74
,
147
(
2005
).
19.
Jiwei
Zhai
,
Cheng
Gao
,
Xi
Yao
,
Zhengkui
Xu
, and
Haydn
Chen
,
Ceram. Int.
34
,
905
(
2008
).
20.
X. G.
Tang
,
K.-H.
Chew
, and
H. L. W.
Chan
,
Acta Mater.
52
, 5177 (
2004
).
21.
M. L. V.
Mahesh
et al,
J. Electron. Mater.
51
,
727
(
2022
).
22.
B. C.
Luo
,
D. Y.
Wang
,
M. M.
Duan
, and
S.
Li
,
Appl. Phys. Lett.
103
,
122903
(
2013
).
23.
J.
Miao
,
J.
Yuan
,
H.
Wu
,
S. B.
Yang
,
B.
Xu
,
L. X.
Cao
, and
B. R.
Zhao
,
Appl. Phys. Lett.
90
,
022903
(
2007
).
24.
X. G.
Tang
,
Q. X.
Liu
,
Y. P.
Jiang
,
R. K.
Zheng
, and
H. L. W.
Chan
,
J. Appl. Phys.
100
,
114105
(
2006
).
25.
W. J.
Jie
,
J.
Zhu
,
W. F.
Qin
,
X. H.
Wei
,
J.
Xiong
,
Y.
Zhang
,
A.
Bhalla
, and
Y. R.
Li
,
J. Phys. D: Appl. Phys.
40
,
2854
(
2007
).
26.
G.
Suchaneck
et al,
J. Eur. Ceram. Soc.
27
,
3789
(
2007
).
27.
V. S.
Vidyarthi
et al,
Thin Solid Films
515
,
3547
(
2007
).
28.
W.
Zhang
and
F. R.
Hu
,
J. Vac. Sci. Technol. B
38
,
012208
(
2020
).
29.
J. W.
Zhai
,
X.
Yao
,
L. Y.
Zhang
,
B.
Shen
, and
H.
Chen
,
J. Cryst. Growth
262
,
341
(
2004
).
30.
W.
Zhang
et al,
J. Alloys Compd.
580
,
363
(
2013
).
31.
L.
Jin
,
F.
Li
, and
S. J.
Zhang
,
J. Am. Ceram. Soc.
97
,
1
(
2014
).
32.
W.
Zhang
,
H.
Wu
,
X.
Zhang
,
H.
Zhu
, and
F.
Hu
,
Mater. Res. Express
6
,
106420
(
2019
).
33.
J.
Li
,
H.
Zhang
,
W.
Yao
, and
W.
Zhang
,
J. Mater. Sci. Mater. Electron.
34
,
640
(
2023
).
34.
J. F.
Ihlefeld
,
J. P.
Maria
, and
W.
Borland
,
J. Mater. Res.
20
,
2838
(
2005
).
35.
L. L.
Jiang
et al,
Appl. Surf. Sci.
255
,
8913
(
2009
).
36.
J.
Zhai
et al,
J. Phys. D: Appl. Phys.
37
,
748
(
2004
).
37.
L.
Xu
et al,
J. Mater. Sci. Mater. Electron.
31
,
5492
(
2020
).
38.
C.
Fu
et al,
J. Mater. Sci. Mater. Electron.
24
,
1303
(
2013
).
39.
P. Z.
Zhang
,
M. R.
Shen
,
L.
Fang
,
F. G.
Zheng
,
X. L.
Wu
,
J. C.
Shen
, and
H. T.
Chen
,
Appl. Phys. Lett.
92
,
222908
(
2008
).
40.
A.
Dixit
,
S. B.
Majumder
,
A.
Savvinov
,
R. S.
Katiyar
,
R.
Guo
, and
A. S.
Bhalla
,
Mater. Lett.
56
,
933
(
2002
).
41.
W.
Zhang
,
F. R.
Hu
,
H.
Zhang
, and
J.
Ouyang
,
Mater. Res. Bull.
95
,
23
(
2017
).
42.
B.
Liu
,
Y.
Wu
,
Y. H.
Huang
,
K. X.
Song
, and
Y. J.
Wu
,
J. Mater. Sci.
54
,
4511
(
2019
).
43.
H. F.
Zhu
,
H. F.
Ma
, and
Y. Y.
Zhao
,
Phys. Lett. A
382
,
1409
(
2018
).
44.
V. S.
Puli
,
A.
Kumar
,
D. B.
Chrisey
,
M.
Tomozawa
,
J. F.
Scott
, and
R. S.
Katiyar
,
J. Phys. D: Appl. Phys.
44
,
395403
(
2011
).
You do not currently have access to this content.